Trimble Access™ GENIO Routes

Manuel de l'utilisateur

Version 2024.10 Révision A Octobre 2024

Contenu

Routes	3
Routes GENIO	5
Pour exporter des fichiers GENIO de 12d Model	5
Affichage des routes GENIO dans la carte	5
Définir une route GENIO	7
Pour définir une route GENIO	7
Pour créer ou modifier des polylignes dérivées d'autres polylignes	9
Pour exclure l'alignement lors de l'implantation	11
Pour extraire des modèles d'un fichier 12da	11
Pour revoir la définition d'une GENIO route	12
Interpolation des polylignes	14
Navigation dans la route	17
Affichage de la navigation de l'implantation.	26
Implantation d'une route GENIO	30
Pour commencer l'implantation d'une route GENIO	30
Pour implanter des positions par rapport à une route GENIO	33
Pour implanter une position par rapport à une polyligne dans une route GENIO:	34
Pour implanter une station sur une polyligne dans une route GENIO	35
Pour implanter une position par rapport à une route secondaire	37
Implanter une position à un déport incliné	40
Options d'implantation de route	43
Elévations précises	70
Rapports	73
Rapports d'implantation Routes	73
Pour générer un rapport	74
Notices juridiques	75

Routes

Le logiciel Trimble Access Routes est une application spécialisée pour la topographie des routes et des objets linéaires similaires.

Le logiciel Routes peut être utilisé pour faire un levé des routes pour lesquelles le projet routier est défini dans un fichier de projet routier, ou dans lequel vous pouvez construire des éléments d'une route (ou d'autres objets similaires) en sélectionnant une ou deux polylignes à implanter par rapport à une polyligne de stationnement primaire. Lors de l'implantation d'une polyligne, vous pouvez également définir une surface, si requis.

Lors d'un relevé avec un fichier de projet routier vous pouvez :

• Charger un projet routier existant consistant en un alignement avec une ou plus polylignes associées définissant la route, ou avec des modèles de profil en travers associés.

Les types de fichier pris en charge sont RXL, LandXML et GENIO.

- Entrez une définition de projet routier RXL y compris des axes en plan et des profils en long projet, des modèles, et des enregistrements de superélévation et d'élargissement.
- Revoyez la définition de route.
- Implantez la route.

Lors d'un levé utilisant des polylignes et des surfaces ou deux polylignes vous pouvez :

 Implantez des polylignes individuelles par rapport à une polyligne de stationnement primaire, par exemple des îlots de circulation ou des bordures de trottoir. Ou implantez deux polylignes par rapport à une polyligne de stationnement primaire, par exemple le bord supérieur et inférieur d'un talus ou des travaux de terrassement de construction.

Les polylignes peuvent être des lignes, des arcs ou des polylignes entrés au clavier dans l'étude ou elles peuvent être sélectionnées à partir de tout fichier lié contenant des lignes de fond.

• Implanter deux polylignes où vous souhaitez une station et déport et un déblai/remblai aux deux polylignes en même temps.

Générez un rapport pour les données de route implantées pour vérifier les données sur le terrain, ou pour transférer des données du terrain à votre client ou au bureau pour un traitement ultérieur avec le logiciel de bureau.

Utilisation de l'application Routes

Pour utiliser Routes, il faut changer à l'application Routes. Pour changer entre les applications, appuyez sur \equiv et appuyez sur le nom de l'application que vous utilisez actuellement, et puis sélectionnez l'application à laquelle il faut changer.

TIP – L'application Routes comprend le menu **Cogo** complet à partir de Topographie Générale afin que vous puissiez effectuer les fonctions de géométrie des coordonnées (cogo) sans besoin de changer à Topographie Générale. Vous pouvez également accéder à certaines de ces fonctions cogo à partir du menu appuyer et rester dans la carte. Pour des informations concernant toutes les fonctions cogo disponibles, référez-vous à la section *Manuel de l'utilisateur Trimble Access Topographie Générale*.

Lorsque vous commencez un levé vous serez demandé de sélectionner un type de levé que vous avez configuré pour votre équipement.Pour vous renseigner de plus concernant les types de levé et les paramètres de connexion associés, consultez la rubrique appropriée dans l'*Aide Trimble Access*.

Pour personnaliser la terminologie utilisée dans le logiciel, appuyez sur \equiv et sélectionnez **Paramètres** / **Langue**. Sélectionnez :

- **Utiliser la terminologie ferroviaire** si vous effectuez un levé d'une chemin de fer et vous souhaitez utiliser la terminologie spécifique aux chemins de fer.
- Utiliser la terminologie de distance à chaînage pour utiliser le terme Chaînage au lieu de Station pour la distance le long de la route.

Routes GENIO

Les fichiers GENIO qui définissent une route peuvent être exportés à partir de nombreux logiciels de conception routière tiers, y compris Bentley MXROAD et 12d Model.

L'extension de fichier pour le fichier GENIO doit être *.crd, *.inp, ou *.mos.

Vous pouvez également utiliser le logiciel Trimble Access Routes pour créer un fichier GENIO..inp qui contient des modèles extraits d'un fichier .12da. Ceci est particulièrement utile si vous n'êtes pas en mesure d'exporter des fichiers GENIO à partir du logiciel 12d Model.

Pour exporter des fichiers GENIO de 12d Model

TIP – Vous pouvez utiliser le logiciel Trimble Access Routes pour créer un fichier GENIO .mos qui contient des modèles extraits d'un fichier .12da. Voir Pour extraire des modèles d'un fichier 12da.

Utilisez les étapes ci-dessous pour exporter une route comme un fichier GENIO de 12d Model:

- 1. Démarrez 12d Model et sélectionnez un projet.
- 2. Sélectionnez File I/O / Data output GENIO (Fichier E/S / Sortie de données GENIO).
- 3. Dans le dialogue **Write GENIO File for** (Ecrire fichier GENIO pour), sélectionnez la polyligne de l'alignement comme les données à écrire.
- 4. Entrez un nom du fichier.
- 5. Configurez le champ **Alignment dimension** (Dimensions de l'alignement) sur 6D.
- 6. Sélectionnez la case à cocher **77 Format**.
- 7. Ecrivez le fichier mais ne sélectionnez pas Finish (Terminer).
- 8. Sélectionnez les autres polylignes définissant la route comme les données à écrire. Utilisez l'option de filtre pour aider la sélection des polylignes.
- 9. Conservez le nom du fichier utilisé pour l'écriture de la polyligne de l'alignement.
- 10. Configurez le champ **Alignment dimension** sur 3D.
- 11. Ecrivez le fichier et puis sélectionnez Yes (Oui) pour ajouter à la fin du fichier existant.
- 12. Sélectionnez Finish.

Affichage des routes GENIO dans la carte

Dans la carte, une route GENIO s'affiche en grisé avec l'alignement indiqué comme une ligne rouge.

Si la route n'est pas affichée dans la carte, appuyez sur \bigotimes pour ouvrir le **Gestionnaire des couches** et sélectionnez l'onglet **Fichiers de carte**. Sélectionnez le fichier GENIO pour afficher la liste des alignements disponibles dans le fichier. Pour rendre l'alignement visible dans la carte, appuyez sur le nom de l'alignement que vous voulez pour définir la route et puis appuyez à nouveau pour le rendre sélectionnable **Selectionnable** dans la carte. Appuyez sur **Accepter** pour retourner à la carte.

Dans la carte, appuyez sur l'alignement pour sélectionner la route. La route est mise en surbrillance en jaune avec l'alignement indiqué comme une ligne bleue. Lorsque vous sélectionnez une route, les touches programmables **Revoir**, **Modifier**, et **Implanter** s'affichent, vous permettant de revoir ou modifier la définition de route, ou d'implanter la route.

TIP – Si la route s'affiche sous forme d'un gradient de couleur et si vous préférez la visualiser en jaune, dans la barre d'outils de la carte, appuyez sur **/ Paramètres** et effacez la case à cocher **Afficher le gradient de couleur** dans la boîte de groupe **Surface**.

NOTE – Pour une route GENIO qui n'est pas encore totalement définie, seule l'alignement s'affiche dans la carte. Lorsque vous appuyez sur la polyligne pour la sélectionner, les touches programmables **Définir** et **Implanter** sont disponibles. Appuyez sur **Définir** pour ajouter les polylignes à la route et achever la définition de route. Appuyez sur **Implanter** pour implanter l'alignement.

Pour afficher ou masquer des routes ou d'autres fichiers liés dans la carte, appuyez sur \bigotimes pour ouvrir le **Gestionnaire des couches** et sélectionnez l'onglet **Fichiers de carte**. Appuyez sur un fichier pour le rendre visible ou pour le masquer. Cela est utile lors de la revue d'une route par rapport aux routes secondaires associées, surtout aux échanges et aux intersections.

Définir une route GENIO

Les fichiers GENIO consistent d'un nombre de polylignes qui définissent la géométrie des routes dans le ficher. Lorsque vous définissez une route vous sélectionnez les polylignes appropriées du fichier GENIO. Le nom de route et les noms des polylignes sélectionnées sont enrgeistrés sous forme d'un commentaire à la fin du fichier GENIO.

NOTE – Du fait que les fichiers GENIO ne comprennent pas les unités pour les valeurs dans le fichier, il faut configurer les unités appropriées pour le fichier GENIO avec lequel vous travaillez dans l'étude.

Pour définir une route GENIO

Pour définir une route, vous devez sélectionner le fichier GENIO, puis sélectionner les polylignes dans le fichier GENIO qu'il faut inclure dans la nouvelle définition de route.

Pour sélectionner le fichier GENIO de la carte

- 1. Appuyez sur ⊗ dans la barre d'outils de la carte pour ouvrir le **Gestionnaire des couches** et sélectionner l'onglet **Fichiers de carte**.
- Sélectionnez le fichier GENIO pour afficher la liste des alignements disponibles dans le fichier. Pour rendre la polyligne visible dans la carte, appuyez sur le nom de l'alignement que vous souhaitez définir la route et puis appuyez à nouveau pour le rendre sélectionnable dans la carte. Appuyez sur Accepter.
- 3. À partir de la carte, appuyez sur l'alignement pour le sélectionner et puis appuyez sur **Définir** pour définir une nouvelle route GENIO.

L'écran **Créer une nouvelle route GENIO** s'affiche. Pour continuer, voir Pour définir la nouvelle route ci-dessous.

Pour sélectionner le fichier GENIO dans le menu.

- 1. Appuyez sur \equiv et sélectionnez **Définir**.
- 2. Sélectionnez la **Route GENIO**.
- 3. Dans l'écran **Sélectionner le fichier GENIO**, sélectionnez le fichier GENIO.Le fichier doit être dans le dossier du projet courant.
- 4. Appuyez sur Edit.
- 5. Appuyez sur **Nouv**.

L'écran **Créer une nouvelle route GENIO** s'affiche. Pour continuer, voir Pour définir la nouvelle route ci-dessous.

Pour définir la nouvelle route

1. Dans l'écran **Créer une nouvelle route GENIO**, entrez le nom de la route.Appuyez sur **OK**.

Le logiciel affiche toutes les polylignes dans le fichier sélectionné.

2. Appuyez sur les polylignes que vous voulez ajouter à la route. Pour sélectionner plusieurs polylignes, faites glisser-déplacer une boîte autour des polylignes.

Les alignements sélectionnés s'affichent sous formes des cercles solides rouges. Les polylignes sélectionnées s'affichent sous formes des cercles solides bleus.

TIP -

- Pour vous déplacer sur l'écran, utilisez les touches programmables ou appuyez et restez sur la touche programmable Déplacer pour la rendre active et puis appuyez sur les touches directionnelles.
- Pour visualiser votre position courante lors de la définition d'une route, démarrez un levé.
- Pour désélectionner une polyligne, appuyez sur celle-ci à nouveau. Pour effacer votre sélection courante, dans le menu appuyer et rester sélectionnez **Effacer la sélection**.
- Pour sélectionner les polylignes d'une liste, tapez et restez dans l'écran et puis sélectionnez Sélection de liste. Appuyez sur les noms de polyligne pour les sélectionner. Les polylignes sélectionnées s'affichent dans la liste avec une coche à côté.

Pour changer le type de polyligne ou pour renommer une polyligne, appuyez sur **Modifier**. Bien que les noms de polyligne dans le fichiers GENIO sont limités à quatre caractères, cette limitation ne s'applique pas lorsque vous la renommez dans Trimble Access.

- 4. Appuyez sur **Accepter**.
- 5. Appuyez sur **Stocker**.

NOTE -

- Une route ne peut contenir qu'un alignement (polyligne 6D). Sile fichier GENIO ne comprend pas une polyligne 6D mais comprend une polyligne 12D, le logiciel Routes générera une polyligne 6D avec la même géométrie que la polyligne 12D et des positions tous les 5 mètres.
- Lorsqu'elle est disponible, Trimble vous recommande d'inclure la polyligne 12D qui coïncide avec l'alignement sélectionné dans la route. Les polylignes 12D comprennent la géométrie du profil en long qui permet au logiciel Routes d'interpoler correctement les élévations entre les positions le long de l'alignement.
- Si une route comprend une polyligne 12D ou s'il y a une polyligne 12D dans le fichier GENIO relative à la polyligne 6D dans le groupe, les valeurs de station dans la polyligne 12D définissant l'axe en plan ont un suffixe de leur acronyme approprié. Par exemple, PC pour le début d'une courbe.
- Du fait que les valeurs de station des polylignes 3D et 5D sont définies en fonction de la polyligne 6D sélectionnée, sélectionnez des polylignes pour le groupe qui manifestement définissent une route.
- Si requis, vous pouvez exclure l'alignement lors de l'implantation. Voir Pour exclure l'alignement lors de l'implantation, page 11.
- Les alignements non sélectionnés s'affichent comme des cercles vides rouges. Les polylignes (3D et 5D) non sélectionnées s'affichent comme des cercles vides gris foncé.
- Tapez et restez sur une polyligne pour rechercher le nom de polyligne. Pour un alignement (polyligne 6D) l'étendue des stations s'affiche aussi.
- Pour définir une nouvelle polyligne 3D, appuyez et restez sur l'écran et puis sélectionnez
 Nouvelle polyligne. Cette option n'est pas disponible jusqu'à ce que vous ayez sélectionné un alignement (polyligne 6D).

Pour créer ou modifier des polylignes dérivées d'autres polylignes

Si requis, vous pouvez définir une nouvelle polyligne dérivée d'une polyligne existante dans le fichier GENIO. Ensuite, vous pouvez modifier ou supprimer des polylignes dérivées des polylignes existantes, comme requis, dans le menu appuyer et rester.

Pour définir une nouvelle polyligne, il faut d'abord avoir sélectionné un alignement dans la nouvelle route GENIO. Les nouvelles polylignes sont créées comme des polylignes 3D.

- 1. Sélectionnez un fichier GENIO et définissez une nouvelle route ou modifiez une route existante et appuyez sur **Edit**.
- 2. Dans le menu taper et rester, sélectionnez **Nouvelle polyligne**.
- 3. Entrez le nom de la polyligne

- 4. Sélectionnez la polyligne à partir de laquelle la nouvelle polyligne sera dérivée. Vous ne pouvez pas définir une nouvelle polyligne par rapport à une polyligne 5D.
- 5. Sélectionnez une méthode de dérivation de polyligne et puis entrez les valeurs définissant la nouvelle polyligne.

Le diagramme suivant illustre la méthode **Déport et pente calculée** dans laquelle la polyligne **Dérivée de (1)**, la valeur **Déport (2)** et la polyligne **Calculée de (3)** définissent une nouvelle polyligne **(4)** sur la pente entre les polylignes **Dérivée de** et **Calculée de**.

6. Appuyez sur **Accepter**.

La nouvelle polyligne s'affiche, colorée en sarcelle.

NOTE – Lorsque vous définissez une nouvelle polyligne par la méthode **Déport et pente calculée**, la nouvelle polyligne est définie seulement où les valeurs de station des polylignes **Dérivée de** et **Calculée de** correspondent.

Pour exclure l'alignement lors de l'implantation

Si l'alignement a une géométrie verticale qui n'a pas aucun rapport au projet routier, vous pouvez exclure cette polyligne. Pour ce faire, lors de la définition de la route GENIO, appuyez et restez sur l'écran et sélectionnez **Exclure l'alignement lors de l'implantation**.

L'alignement fera toujours partie de la route et sera utilisé pour calculer les valeurs de station lors de l'implantation.

Lors de l'implantation, l'alignement s'affiche en gris dans la vue en plan et ne s'affiche pas dans la vue en profil en travers. L'alignement n'est pas disponible dans la liste de sélection de polylignes.

NOTE – Afin d'assurer que l'alignement soit disponible lors de l'implantation, effacez **Exclure** l'alignement lors de l'implantation.

Pour extraire des modèles d'un fichier 12da

Vous pouvez utiliser le logiciel Trimble Access Routes pour créer un fichier GENIO .mos qui contient des modèles extraits d'un fichier .12da. Ceci est particulièrement utile si vous n'êtes pas en mesure d'exporter des fichiers GENIO à partir du logiciel 12d Model.

TIP – Si le fichier. .12da a été exporté à partir 12d Model du logiciel sous la forme d'un fichier zippé, il a l'extension de fichier. .12daz. Pour extraire le fichier .12da afin que vous puissiez l'utiliser dans Trimble Access, dans File Explorer modifier l'extension du fichier .12daz à .zip, puis utilisez Winzip pour extraire le fichier.

NOTE – La conversion des fichiers de .12da aux fichiers GENIO n'est pas disponible lors l'utilisation de Trimble Access sur un contrôleur Trimble s'exécutant sous Android.Dans ce cas, utilisez le convertisseur de fichiers 12da en route GENIO pour l'utilitaire Trimble Access, qui peut être téléchargé à partir de la page Logiciel et utilitaires du Portail d'aide Trimble Access.

- 1. Appuyez sur \equiv et sélectionnez **Définir**.
- 2. Sélectionnez la Route GENIO.
- 3. Dans l'écran **Sélect. le fichier GENIO**, appuyez sur **12da**.

TIP – Autrement, appuyez sur \otimes dans la barre d'outils de la carte pour ouvrir le **Gestionnaire des couches**, sélectionnez l'onglet **Fichiers de carte** et puis appuyez sur **12da**. Cette option est disponible uniquement lorsque Routes est l'application sélectionnée actuellement.

- 4. Appuyez sur **b** pour naviguer jusqu'à l'emplacement du fichier 12da et sélectionnez-le.Appuyez sur **Accepter**.
- 5. Dans la fenêtre de l'utilitaire de conversion, sélectionnez les modèles (couches) qui contiennent les polylignes de route que vous souhaitez inclure dans le nouveau fichier GENIO.

Vous devez sélectionner **au moins un** modèle contenant un **alignement**. Les modèles contenant des alignements sont de couleur rouge.

NOTE -

- Le logiciel Roads exige que chaque route définie à partir d'un fichier GENIO comprenne un alignement (polyligne 6D). Sile fichier GENIO ne comprend pas une polyligne 6D mais comprend une polyligne 12D, alors l'utilitaire de conversion générera une polyligne 6D avec la même géométrie que la polyligne 12D et des positions tous les 5 mètres ou pieds. Cependant pour les arcs avec un petit rayon les positions calculées sont basées sur une séparation arc à corde d'un maximum de 10 mm afin d'assurer que la route soit représentée avec précision.
- L'utilitaire de conversion convertit les polylignes 3D dont les noms commencent par **Int** ou **IA** aux polylignes d'interaface 5D dans le fichier GENIO.
- S'il y a des noms de polyligne 6D en double, les doublons sont donnés un suffixe incrémentiel, c'est à dire.-1, -2, -3...
- 6. Appuyez sur **OK**. .
- 7. Entrez le nom du nouveau fichier et appuyez sur **OK**.

Le nouveau fichier GENIO est répertorié dans l'écran **Sélect. le fichier GENIO**.

8. Définissez la route GENIO à partir du nouveau fichier GENIO. Voir Pour définir une route GENIO.

Pour revoir la définition d'une GENIO route

Vous pouvez revoir la définition d'une route à tout moment. Affichez la route en 3D pour confirmer visuellement la définition de la route et pour visualiser la route par rapport à d'autres définitions de route telles qu'une échange complexe ou une intersection urbaine.

- 1. Dans la carte, appuyez sur la route.
- 2. Appuyez sur **Revoir**.

Les cercles noirs vides représentent toute partie de l'axe en plan n'ayant aucune élévation et donc dessinés sur le plan au sol.

TIP – Pour déplacer le plan au sol plus près à la route, appuyez sur **et** sélectionnez **Paramètres** et puis modifiez l'élévation du plan au sol.

Les cercles noirs solides représentent les positions sur les polylignes à chaque profil en travers.

Les lignes grises représentent les polylignes et relient les profils en travers.

3. Appuyez sur une polyligne ou une station sur une polyligne

Alternativement, appuyez sur la touche programmable **Polyligne** pour sélectionner une polyligne dans la liste. La liste n'affiche que les polylignes qui se trouvent à la station de début ou, si vous avez une position, les polylignes au profil en travers à votre position courante. Lors de la sélection d'une polyligne, appuyez sur la touche programmable **Station** pour sélectionner une station dans la liste.

Les informations concernant l'élément sélectionné s'affiche à côté de la carte.

- 4. Pour sélectionner une autre station ou polyligne, vous pouvez :
 - Appuyez sur la station sur une polyligne
 - Appuyez sur la touche programmable **Station** ou **Polyligne** pour sélectionner une station ou une polyligne dans la liste.
 - Appuyez sur une touche directionnelle vers le haut ou le bas pour sélectionner une autre station ou appuyez sur la touche directionnelle à gauche ou à droite pour sélectionner une autre polyligne.
 - Appuyez sur la touche programmable Sta- ou Sta+.

Utilisez la barre d'outils de la carte pour naviguer autour de la carte et pour changer entre les vues.

5. Pour afficher les profils en travers disponibles, appuyez sur 🚝 . Alternativement, attribuez la fonction **Basculer Plan / Profil en travers** à une touche de fonction sur le contrôleur afin que vous puissiez changer entre les vues en plan et les vues en profil en travers lors de la revue et l'implantation d'une route.

Par défaut, chaque profil en travers s'affiche en plein écran, ce qui fournit la meilleure vue du profil en travers. Pour afficher des profils en travers l'un par rapport à l'autre, appuyez sur le bouton **Échelle fixe** \mathbb{Q} afin qu'il change à \mathbb{Q} . Chaque profil en travers s'affiche avec l'échelle fixe afin que le profil en travers le plus large remplit l'écran.

L'alignement s'affiche comme une croix rouge. Les cercles noirs représentent les polylignes. Le cercles bleu plus grand représente la polyligne sélectionnée actuellement. Les lignes de fond précédant la polyligne sélectionnée s'affichent comme une ligne bleue en gras. Les informations concernant l'élément sélectionné s'affiche à côté de la carte.

Pour afficher le profil en travers à une autre station, vous pouvez :

- Appuyez sur la touche directionnelle en haut ou en bas.
- Appuyez sur **Station** pour entrer une station ou sélectionner une station de la liste.

Pour sélectionner une autre polyligne, vous pouvez :

- Appuyez sur la polyligne.
- Appuyez sur la touche directionnelle à gauche ou à droite.
- Appuyez sur **Polyligne** pour sélectionner une polyligne dans la liste.
- 6. Pour retourner au plan de la route, appuyez sur du appuyez sur la touche **Tab**.

- 7. Pour afficher une conduite en 3D automatisée sur la route :
 - a. Lors de l'affichage du plan ou du profil en travers dans la carte, appuyez sur **Conduite en 3D**.
 - b. Appuyez sur ▶ pour commencer la conduite.
 - c. Pour suspendre la conduite et inspecter une partie particulière de la route, appuyez sur **II**. Pour faire une orbite autour de la route pendant que la conduite est interrompue, appuyez sur l'écran et glissez dans la direction à orbiter.
 - d. Pour vous déplacer en avant ou en arrière le long de la route, appuyez sur les touches directionnelles en haut et en bas.
 - e. Pour quitter la conduite en 3D, appuyez sur **Fermer**.
- 8. Pour quitter la revue de la route, appuyez sur **Fermer**.

TIP – Pour revoir une position définie par une valeur de station nominale, où la station ne doit pas coïncider avec un profil en travers, dans la vue en plan ou en profil en travers appuyez sur **Station** et puis entrez une valeur de station.

Interpolation des polylignes

Les règles suivantes s'appliquent aux valeurs de station entrées:

- Pour un alignement (polyligne 6D), les coordonnées pour les positions de station entrées au clavier sont calculées en respectant la géométrie de la polyligne. Les valeurs d'élévation sont calculées par l'interpolation linéaire. Cependant, s'il y a une polyligne 12D qui coïncide avec la polyligne 6D, le logiciel utilise les données de profil en long disponible dans la polyligne 12D pour calculer les valeurs d'élévation.
- Pour une polyligne 3D, les valeurs de déport et d'élévation sont interpolées à partir des valeurs de déport et d'élévation des positions précédentes et suivantes sur cette polyligne. Cela garantit l'intégrité du projet, en particulier sur les courbes serrées. Consultez la figure suivante dans laquelle le profil en travers associé à la station 100 comprend un déport de polyligne de la ligne 6D par 3 et une élévation de 25. Le profil en travers suivant à la station 120 a un déport de polyligne par 5 et une élévation de 23. La position sur la polyligne pour la station interpolée 110 est interpolée comme indiqué pour fournir un déport de 4 et une élévation de 24.

Cependant, si l'angle de déclinaison de la polyligne 3D par rapport à celui de la polyligne 6D associée est supérieur de 30 minutes, la géométrie de la polyligne 6D associée sera ignorée et les coordonnées seront calculées par l'interpolation linéaire. Cela se fait afin d'éviter un comportement inattendu lorsqu'il y a un changement aigu dans la direction de la polyligne 3D pour des caractéristiques telles que des voies d'accès, des couloirs d'autobus etc.

• L'interpolation des points le long d'une spirale est calculée en utilisant une spirale de clothoide pour les polylignes 12D et 6D et elle est approximée pour les polylignes 3D.

Lors de la mesure de votre position par rapport à la route GENIO ou lorsque votre station et déport sont des valeurs nominale, votre position est calculée par l'interpolation linéaire à partir des positions les plus près sur les polylignes adjacentes.

Dans toutes les situations où votre position est interpolée, des intervalles de station plus près fournissent une précision plus haute.

Navigation dans la route

Lors de l'implantation ou lors de la revue de la route, la gauche de l'écran affiche la route dans la carte ou la vue de profil en travers.

Le volet à droite de l'écran **Revoir** affiche les informations concernant la partie de la route que vous avez sélectionné dans la carte ou dans la vue de profil en travers.

Le volet à droite de l'écran de navigation **Implantation** affiche le volet de navigation.

- La flèche pointe dans la direction du point que vous avez l'intention de mesurer (la « cible »).
- Les valeurs delta d'implantation situées en bas du volet de navigation indiquent la distance jusqu'à et la direction de la cible.

Lors de la navigation à un point pendant l'implantation, les informations affichées dépendent de si vous réalisez un levé conventionnel ou GNSS, et les options que vous avez configuré dans l'écran **Options d'implantation**.

- Pour changer les deltas affichés pendant l'implantation, appuyez sur **Options** dans l'écran de navigation d'implantation ou appuyez et restez dans le volet de navigation. Pour de plus amples informations, consultez la rubrique **Deltas de navigation d'implantation** dans le Manuel de l'utilisateur Trimble Access Topographie Générale.
- Pour afficher les détails de point implanté avant de stocker le point, activez le paramètre Afficher avant stockage. Pour de plus amples informations, consultez la rubrique Détails de point implanté dans le Manuel de l'utilisateur Trimble Access Topographie Générale.

Vue de carte et de profil en travers

L'écran de navigation d'implantation affiche la vue de carte ou la vue de profil en travers de la route.

Carte

La carte affiche :

- L'axe en plan comme une ligne rouge
- D'autres polylignes comme des lignes noires
- Les déports de construction comme des lignes vertes
- Les déports inclinés comme des lignes en pointillés

Lors de l'implantation, la carte affiche une ligne pointillée verte tracée à partir de la position courante jusqu'à :

- l'axe en plan lors de la mesure de votre position par rapport à la route et vous vous trouvez à moins de 30 m de l'alignement/polyligne
- la polyligne sélectionnée lors de la mesure de votre position par rapport à la polyligne et vous vous trouvez à moins de 5m de la polyligne

Vue en profil en travers

Pour afficher le profil en travers de la route, appuyez sur \bowtie dans la barre d'outils de la carte.

Lors de l'affichage d'un fichier de projet routier :

- La vue de profil en travers affiche les polylignes et les modèles par rapport à l'alignement. Elle affiche également toute surface ajoutée ainsi que la surface calculée à partir du projet routier.
- Le profil en travers est orienté dans la direction de station croissante. Votre position courante et la cible sont indiquées. Si la cible a des déports de construction spécifiés, le cercle simple plus petit indique la position sélectionnée et le double cercle indique la position sélectionnée ajustée pour le(s) déport(s) de construction spécifié(s). Le(s) déport(s) de construction s'affichent comme des lignes vertes.
- Le talus en déblai ou en remblai approprié s'affiche pour le côté de la route sur laquelle vous vous trouvez actuellement.

NOTE – Si vous avez configuré le champ **Déblai/remblai du projet** sur **Perpendiculaire** dans l'écran **Options d'implantation**, la position de déblai/remblai perpendiculaire est tracée sur le projet dans la vue en profil en travers uniquement lors de la mesure des positions par rapport à la route.

- Appuyez est restez dans la vue en profil en travers pour définir un talus ou sol de fondation.
- Pour parcourir les modèles de la route, appuyez sur les touches directionnelles. Pour définir une échelle fixe basée sur le modèle le plus large de la route, appuyez sur \Im . Pour utiliser une échelle variable afin que chaque modèle remplit la vue de profil en travers, appuyez sur \Im .

Lors de l'affichage des polylignes et des surfaces :

- Les polylignes n'ont aucune relation l'une par rapport à l'autre jusqu'à ce que vous les sélectionniez.
- La vue de profil en travers n'affiche que la surface utilisée elle ne peut pas afficher de surface calculée.

Pour retourner à la carte, appuyez sur 🤷 .

TIP – Assignez la fonction **Basculer Plan / Profil en travers** à une touche de fonction sur le contrôleur afin que vous puissiez changer entre les vues en plan et les vues en profil en travers lors de la revue et l'implantation d'une route.

Volet de navigation

Avant l'implantation le logiciel affiche :

- Station (lors de l'implantation sur une polyligne)
- Nom de polyligne (lors de l'implantation d'une station sur une polyligne ou la mesure de la position par rapport à une polyligne)

Pour une route RXL, le logiciel utilise le nom de polyligne de la définition de profil en travers type. Lorsque le déport est 0,000 m, le nom de la polyligne passe par défaut à CL.

- L'élévation de projet de la position sélectionnée (affichée en rouge si modifiée)
- Déports de construction
- Lors de l'implantation d'une station sur une polyligne, le logiciel affiche également :
 - Type
 - Déport
 - Elévation (affichée en rouge si modifiée)
- Lors de l'implantation d'un talus le logiciel affiche également :
 - Les valeurs de talus de projet
 - Largeur de fossé coupé (routes RXL uniquement)
- Lors de l'implantation d'un déport incliné, le logiciel affiche également :
 - Déport incliné
 - La déviation d'angle/azimut

Pendant l'implantation le logiciel affiche :

- L'élévation de votre position courante (indiquée en bleu)
- Lors de l'implantation d'un talus, le logiciel affiche également :
 - La valeur du talus définie par votre position courante (affichée en blue)
 - La valeur du talus du projet (affiché en rouge si modifié)
- **Hors route** s'affiche si votre position courante est avant le début de la route ou au-delà de la fin de la route.
- Indéfini s'affiche lorsque des éléments d'axe en plan consécutifs sont non tangentiels et votre position courante est au-delà du point tangente de fin de l'élément entrant mais avant le point tangente de début de l'élément suivant et vous vous trouvez à l'extérieur de la route. Voir la position 1 dans le diagramme ci-dessous.
- Lorsque les éléments d'axe en plan consécutifs sont non tangentiels et votre position courante est avant le point tangente de fin de l'élément entrant mais après le point tangente de début de l'élément suivant et vous vous trouvez à l'intérieur de la route (voir la position 2 dans la figure ci-dessous), les valeurs de station, de déport et de distance verticale sont indiquées relatives à l'élément horizontal le

plus près de votre position afind de déterminer quelle partie de la route à utiliser.

Manuel de l'utilisateur Trimble Access GENIO Routes | 20

Deltas d'implantation de navigation

La partie inférieure du volet de navigation affiche les valeurs delta d'implantation qui indiquent votre position courante par rapport à l'élément en cours d'implantation.

Pour changer les deltas affichés pendant l'implantation, appuyez sur **Options** dans l'écran de navigation d'implantation ou appuyez et restez dans le volet de navigation.

NOTE -

- Si vous utilisez un instrument conventionnel, les valeurs de route ne s'affichent qu'après vous avez effectué une mesure de distance.
- Si la route ne consiste en qu'un axe en plan et un profil en long projet, la valeur **Dist V**. indique la distance verticale au profil en long projet.

Compréhension des directions de navigation

Pendant l'implantation, maintenez l'écran d'affichage devant vous pendant que vous vous déplacez en avant dans la direction indiquée par la flèche. La flèche pointe dans la direction du point que vous avez l'intention de mesurer (la « cible »).

Comme indiqué dans le diagramme ci-dessous, les valeurs dans les champs **Allez en avant/Allez en arr (1)** et **Allez à gauche/Allez à droite (2)** sont relatives au profil en travers du point que vous implantez **(3)**. Elles *ne sont pas* relatives à la direction du déplacement courant **(4)**, ou à la direction de station croissante **(5)** à votre position courante **(6)**.

Manuel de l'utilisateur Trimble Access GENIO Routes | 23

Comportement des déports/caractéristiques entrés au clavier et sélectionnés

Le comportement lors de l'implantation diffère selon si le déport/polyligne a été sélectionné dans la carte ou la vue de profil en travers, sélectionné dans une liste, ou entré au clavier.

- Si vous sélectionnez une polyligne dans la carte ou la vue de profil en travers, ou si vous sélectionnez une polyligne dans la liste, la valeur Allez à droite/Allez à gauche lors de l'implantation se met à jour pour refléter toute modification de la géométrie à cause des modifications du modèle ou de l'élargissement.
- Si vous entrez une valeur de déport numérique (effectivement définissant une polyligne "en vol") cette valeur est maintenue pour la longueur entière de la route.

Navigation dans la route

Considérez le diagramme suivant:

Si vous sélectionnez un déport/polyligne ayant une valeur de déport de 5m, la valeur de déport se met à jour afin de suivre la ligne solide pour des stations ultérieures. Dans cet exemple, le déport change de 5m à 8m entre les stations 40m et 100m et puis est maintenu à 8m pour des stations ultérieures.

Si vous entrez 5m pour le déport, le déport suit la ligne à traits. C'est à dire, le déport de 5m est maintenu pour des stations ultérieures.

Manuel de l'utilisateur Trimble Access GENIO Routes | 25

Informations du capteur d'inclinaison GNSS

Lors de l'utilisation d'un récepteur GNSS avec un capteur d'inclinaison intégré, vous pouvez :

- Appuyez sur **eBulle** pour afficher une bulle électronique
- Configurer le type de levé de produire un avertissement lorsque la mire se trouve hors d'une **Tolérance d'inclinaison** spécifiée.
- Pour configurer les paramètres de qualité, de précision et d'inclinaison, appuyez sur **Options**.

Affichage de la navigation de l'implantation.

Les informations affichées lors de la navigation aux points pendant l'implantation dépendent de si vous réalisez un levé conventionnel ou GNSS, et les options que vous avez configuré dans l'écran **Options d'implantation**.

Pour configurer ces options :

- Lors de l'implantation, appuyez sur **Options** dans l'écran de navigation d'implantation.

Levés conventionnels

Utilisez le groupe **Affichage** pour configurer l'apparence de l'affichage de navigation lors de l'implantation :

• Pour afficher la grande flèche de navigation dans l'écran de navigation, configurez le bouton **Afficher** graphiques d'implantation sur **Oui**

TIP – Si vous utilisez un contrôleur avec un écran plus petit, ou si vous voulez faire entrer plus deltas de navigation à l'écran, configurez le bouton **Afficher les graphiques d'implantation** sur **Non**. Les autres champs dans le groupe **Affichage** sont masqués lorsque le bouton est configuré sur **Non**.

- Sélectionnez le Mode d'affichage : Les options sont :
 - **Direction et distance** l'affichage de navigation d'implantation affiche une grande flèche pointant dans la direction dans laquelle il faut vous déplacer. Lorsque vous vous trouvez près de la flèche, la flèche changera aux directions intra/extra et à gauche/droite.
 - **Int/ext et gauche/droite** l'affichage de navigation d'implantation affiche les directions int/ext et à gauche/droite.

TIP – Par défaut le logiciel fournit automatiquement les directions intra/extra et à gauche/droite de la **Perspective cible** dans un levé robotique, et de la **Perspective instrument** lorsque connecté à un instrument servo au moyen d'une plaque frontale ou d'un câble. Pour le modifier, changez les paramètres dans la boîte de groupe **Servo/Robotique**. Pour de plus amples informations, consultez la rubrique **Configuration de l'instrument** dans le *Manuel de l'utilisateur Trimble Access Topographie Générale*.

- Utilisez le champ **Tolérance de distance** pour spécifier l'erreur de distance permise. Si la cible se trouve dans cette distance à partir du point, le logiciel indique que la distance est correcte.
- Utilisez le champ **Tolérance d'angle** pour spécifier l'erreur d'angle permise. Si l'instrument conventionnel est détourné du point par moins de cet angle, le logiciel indique que l'angle est correct.
- Utilisez le champ **Pente** pour afficher la pente d'une pente sous forme d'un angle, un pourcent, ou un ratio. Le rapport peut être affiché comme **Valeur V.:Valeur H.** ou **Valeur H.:Valeur V.**
- Lors de l'implantation d'une position par rapport à une route, dans le champ **Déblai/remblai du projet**, sélectionnez si le déblai/remblai **Vertical** ou **Perpendiculaire** au projet dans le champ doit être affiché.

NOTE – La position de déblai/remblai **Perpendiculaire** est tracée sur le projet dans la en vue profil en travers. Du fait que la vue de profil en travers n'est pas tracée à l'échelle, la position perpendiculaire peut sembler légèrement incorrecte (c'est à direpas exactement perpendiculaire).

TIP – Pour toutes les autres méthodes d'implantation, le déblai/remblai **Vertical** au projet est toujours affiché.

Dans le groupe **Deltas**, revoyez les deltas affichés pour l'élément d'implantation actuel. Pour changer les deltas affichés, appuyez sur **Modifier**.

Les deltas sont les champs d'informations affichés pendant la navigation qui indiquent la direction et la distance dont vous devez vous déplacer jusqu'à l'élément que vous souhaitez implanter. Consultez la rubrique **Deltas de navigation d'implantation** dans le *.Manuel de l'utilisateur Trimble Access Topographie Générale*

Pour afficher le déblai ou le remblai par rapport à une surface pendant l'implantation, activez le bouton **Déblai/Remblai à la surface**. Dans le champ **Surface**, sélectionnez le fichier de surface à partir du dossier du projet courant.Si requis, dans le champ **Déport à la surface**, spécifiez un déport à la surface. Appuyez sur pour sélectionner s'il faut appliquer le déport verticalement ou perpendiculairement à la surface.

Si votre contrôleur Trimble est muni d'une boussole interne, vous pouvez l'utiliser lors de l'implantation d'une position ou la navigation vers un point. Pour utiliser la boussole interne, sélectionnez la case à cocher **Boussole**. Trimble vous recommande de **désactiver** la boussole lorsque vous vous trouvez à proximité des champs magnétiques qui peuvent provoquer de l'interférence.

Levés GNSS

Utilisez le groupe **Affichage** pour configurer l'apparence de l'affichage de navigation lors de l'implantation :

• Pour afficher la grande flèche de navigation dans l'écran de navigation, configurez le bouton **Afficher** graphiques d'implantation sur **Oui**

TIP – Si vous utilisez un contrôleur avec un écran plus petit, ou si vous voulez faire entrer plus deltas de navigation à l'écran, configurez le bouton **Afficher les graphiques d'implantation** sur **Non**. Les autres champs dans le groupe **Affichage** sont masqués lorsque le bouton est configuré sur **Non**.

- Sélectionnez le Mode d'affichage : Les options sont :
 - Centré à la cible le point sélectionné reste fixe au centre de l'écran
 - **Centré à l'opérateur** votre position reste fixe au centre de l'écran
- Choisissez une configuration dans le champ **Afficher l'orientation**. Les options sont:
 - **Direction de déplacement** l'écran s'orientera afin que le haut de l'écran soit dirigé dans la direction de déplacement.
 - Nord /Soleil la petite flèche d'orientation indique la position du Nord ou du soleil. L'écran s'orientera afin que le haut de l'écran pointe vers le Nord ou le soleil. Lorts de l'utilisation de l'affichage, appuyez sur la touche programmable **Nord/Soleil** pour basculer l'orientation entre le Nord et le soleil.
 - Azimut de référence :
 - Pour un point, l'écran s'orientera à l'**Azimut de référence** de l'étude. L'option **Implanter** doit être configurée sur **Relative à l'azimut**.
 - Pour une ligne ou une route l'écran s'orientera à l'azimut de la ligne ou de la route.

NOTE – Si, lors de l'implantation d'un point, l'**Orientation d'affichage** est configurée sur **Azimut de référence** et l'option **Implanter n'est pas** configurée sur **Relative à l'azimut** le comportement de l'orientation d'affichage passera par défaut à **Direction de déplacement**.

- Utilisez le champ **Pente** pour afficher la pente d'une pente sous forme d'angle, de pourcentage ou de ratio. Le rapport peut être affiché comme **Valeur V.:Valeur H.** ou **Valeur H.:Valeur V.**
- Lors de l'implantation des positions par rapport à une route, dans le champ **Déblai/remblai du projet**, sélectionnez s'il faut afficher le déblai/remblai **Vertical** ou **Perpendiculaire** au projet.

NOTE – La position de déblai/remblai **Perpendiculaire** est tracée sur le projet dans la en vue profil en travers. Du fait que la vue de profil en travers n'est pas tracée à l'échelle, la position perpendiculaire peut sembler légèrement incorrecte (c'est à direpas exactement perpendiculaire).

TIP – Pour toutes les autres méthodes d'implantation, le déblai/remblai **Vertical** au projet est toujours affiché.

Dans le groupe **Deltas**, revoyez les deltas affichés pour l'élément d'implantation actuel. Pour changer les deltas affichés, appuyez sur **Modifier**.

Les deltas sont les champs d'informations affichés pendant la navigation qui indiquent la direction et la distance dont vous devez vous déplacer jusqu'à l'élément que vous souhaitez implanter. Consultez la rubrique **Deltas de navigation d'implantation** dans le *.Manuel de l'utilisateur Trimble Access Topographie Générale*

Pour afficher le déblai ou le remblai par rapport à une surface pendant l'implantation, activez le bouton **Déblai/Remblai à la surface**. Dans le champ **Surface**, sélectionnez le fichier de surface à partir du dossier du projet courant.Si requis, dans le champ **Déport à la surface**, spécifiez un déport à la surface. Appuyez sur pour sélectionner s'il faut appliquer le déport verticalement ou perpendiculairement à la surface.

Si votre contrôleur Trimble est muni d'une boussole interne, vous pouvez l'utiliser lors de l'implantation d'une position ou la navigation vers un point. Pour utiliser la boussole interne, sélectionnez la case à cocher **Boussole**. Trimble vous recommande de **désactiver** la boussole lorsque vous vous trouvez à proximité des champs magnétiques qui peuvent provoquer de l'interférence.

NOTE – Si vous utilisez la compensation d'inclinaison IMU et l'IMU est aligné, le cap du récepteur est toujours utilisé pour orienter le curseur GNSS, la grande flèche de navigation d'implantation et l'écran en gros plan. Il faut que vous soyez orienté vers le volet LED du récepteur pour que ceux-ci soient orientés correctement.

Implantation d'une route GENIO

Lors de réaliser un levé d'une route GENIO, vous pouvez travaillez à partir de la carte ou du menu.

Si vous sélectionnez la route dans la carte et puis vous appuyez **Implantation**, le logiciel affiche toujours la vue en plan de la route. Sélectionnez l'élément à implanter dans la route. Dans la vue en plan vous pouvez changer à la vue en profil en travers, si requis.

Si vous travaillez à partir du menu, appuyez sur \equiv et sélectionnez **Implanter / Implanter routes** et puis sélectionnez la route à implanter.

Si vous avez choisi d'exclure l'alignement lors de l'implantation, l'alignement s'affiche en gris dans la vue en plan et ne s'affiche pas dans la vue en profil en travers. Pour l'implanter, retournez à **Définir**, et dans le menu appuyer et rester sélectionnez **Exclure l'alignement lors de l'implantation**.

Lorsque vous ouvrez une route GENIO, le logiciel effectue le calcul des valeurs de station pour toutes les polylignes 3D ayant rapport à l'alignement (polyligne 6D) de la route.

Le logiciel effectue l'interpolation des valeurs d'élévation le long de la polyligne. Pour de plus amples informations, référez-vous à Interpolation des polylignes, page 14.

Par défaut, le logiciel convertit toutes les polylignes 5D en talus. Cependant, si la route comprend plusieurs talus qui définissent des talus ayant un repère altimétrique, seulement la polyligne 5D / Interface la plus éloignée de l'alignement sera convertie en un talus .

Afin de configurer le logiciel pour qu'il traite des polylignes 5D comme des polylignes 3D, dans l'écran **Options d'implantation** effacez la case à cocher **Talus automatique**. Pour afficher l'écran **Options d'implantation**, appuyez sur **Options** dans l'écran dans lequel vous entrez la **Hauteur d'antenne** ou la **Hauteur cible**.

Pour les fichiers GENIO définis à partir de 12d Model, Routes traite toutes les polylignes ayant un nom qui comprend les lettres INT comme une polyligne 5D et convertit la polyligne en un talus, à moins que vous n'ayez effacé la case à cocher **Talus automatique** dans l'écran **Options d'implantation**. La valeur de pente calculées est définie par la pente entre la polyligne d'interface et la polyligne 3D adjacente.

Pour commencer l'implantation d'une route GENIO

Lors de l'implantation d'une route Trimble, vous pouvez travaillez à partir de la carte ou du menu.

CAUTION – Ne changez pas le système de coordonnées ou la calibration après avoir implanté des points, ou calculé des points déportés ou d'intersection. Sivous le faites, les points implantés ou calculés précédemment seront inconsistants avec le nouveau système de coordonnées et tout point calculé ou implanté après la modification.

A partir de la carte

1. Dans la carte, appuyez sur la route.

Si la route que vous souhaitez implanter n'est pas affichée dans la carte, appuyez sur \otimes pour ouvrir le **Gestionnaire des couches** et sélectionnez l'onglet **Fichiers de carte**.Sélectionnez le fichier et puis rendez la(les) couche(s) appropriée(s) visible(s) et sélectionnable(s). Le fichier doit être dans le dossier du projet courant.

TIP – Au lieu de sélectionner une route définie, maintenant vous pouvez la définir quand vous en avez besoin (« in vol »). Voir Pour définir une route GENIO.

2. Appuyez sur la touche morte **Implanter**.

Si vous n'avez pas encore commencé un levé, le logiciel vous êtes invité d'effectuer les étapes pour commencer le levé.

- 3. Entrez une valeur dans le champ **Hauteur d'antenne** ou **Hauteur cible** et vérifiez que le champ **Mesuré à** soit configuré correctement.
- 4. Activez le bouton Déblai/Remblai à la surface.
 - a. Dans le champ **Surface**, sélectionnez le fichier de surface à partir du dossier du projet courant.
 - b. Si requis, dans le champ Déport à la surface, spécifiez un déport à la surface. Appuyez sur pour sélectionner s'il faut appliquer le déport verticalement ou perpendiculairement à la surface.
 - c. Pour afficher la distance à la surface dans l'écran de navigation d'implantation, appuyez sur
 Options. Dans la boîte de groupe Deltas, appuyez sur Modifier et sélectionnez le delta Dist V à la surface à la position actuelle ou Dist. perp. à la surface à la position actuelle. Appuyez sur Accepter.
- 5. Appuyez sur **Options** pour configurer les préférences pour **Pente**, **Détails point implanté**, **Afficher** et **Stations disponibles**.
- 6. Appuyez sur **Suivant**.

La vue en plan de la route s'affiche.

7. Sélectionnez l'élément à implanter. Pour les étapes suivantes, consultez la rubrique pour la méthode d'implantation appropriée.

Dès que la position a été mesurée et stockée, le logiciel retourne à l'écran de navigation dans lequel vous pouvez sélectionner le point suivant sur la route/polyligne, ou à l'écran de vue en plan où vous pouvez sélectionner une autre méthode d'implantation.

Dans le menu

- 1. Appuyez sur \equiv et sélectionnez **Implanter**.
- 2. Appuyez sur **Routes de Implantation**.

- 3. Si vous n'avez pas encore commencé un levé, le logiciel vous êtes invité d'effectuer les étapes pour commencer le levé.
- 4. Dans l'écran **Sélectionner le fichier**, sélectionnez le fichier GENIO.Le fichier doit être dans le dossier du projet courant.

TIP – Pour configurer le logiciel afin d'afficher l'écran de sélection de route au lieu de la carte lorsque vous mesurer et stocker une position, appuyez sur **Options** et sélectionnez la case à cocher **Afficher l'écran de sélection de route lors de l'échappement**.

- 5. Appuyez sur **Suivant**.
- 6. Sélectionnez la route à implanter. Appuyez sur **Suivant**.
- 7. Entrez une valeur dans le champ **Hauteur d'antenne** ou **Hauteur cible** et vérifiez que le champ **Mesuré à** soit configuré correctement.
- 8. Activez le bouton **Déblai/Remblai à la surface**.
 - a. Dans le champ **Surface**, sélectionnez le fichier de surface à partir du dossier du projet courant.
 - b. Si requis, dans le champ Déport à la surface, spécifiez un déport à la surface. Appuyez sur pour sélectionner s'il faut appliquer le déport verticalement ou perpendiculairement à la surface.
 - c. Pour afficher la distance à la surface dans l'écran de navigation d'implantation, appuyez sur Options. Dans la boîte de groupe Deltas, appuyez sur Modifier et sélectionnez le delta Dist V à la surface à la position actuelle ou Dist. perp. à la surface à la position actuelle. Appuyez sur Accepter.
- 9. Appuyez sur **Options** pour configurer les préférences pour **Pente**, **Détails point implanté**, **Afficher** et **Stations disponibles**.
- 10. Appuyez sur **Suivant**.

La vue en plan de la route s'affiche.

11. Sélectionnez l'élément à implanter. Pour les étapes suivantes, consultez la rubrique pour la méthode d'implantation appropriée.

Dès qu'une position a été mesurée et stockée, le logiciel retourne à l'écran de navigation dans lequel vous pouvez continuer de mesurer des points sur la route/polyligne, ou à l'écran de vue en plan où vous pouvez sélectionner la positions suivante à implanter ou sélectionnez une autre méthode d'implantation.

Pour implanter des positions par rapport à une route GENIO

1. Commencez le levé et sélectionnez la route sur laquelle effectuer un implantation.

Si rien n'est sélectionné dans la vue en plan, alors par défaut vous êtes prêt à mesurer votre position par rapport à la GENIO route.

- 2. Pour implanter des points décalés de la route, laissant la chaussée dégagée pour la construction, définissez un déport de construction.
- 3. Pour afficher le déblai/remblai perpendiculaire à la route, sélectionnez **Options** et dans la case de groupe **Route**, configurez le champ **Déblai/remblai du projet** sur **Perpendiculaire**.
- 4. Appuyez sur **Commencer**.

L'écran Navigation dans la route, page 17 s'affiche. Appuyez sur **Options** pour configurer les préférences pour les détails de l'affichage de navigation, la pente, Implanté point, ou pour afficher les deltas d'implantation relatifs à un Modèle numérique de terrain (MNT).

5. Utilisez les informations dans l'écran Navigation dans la route, page 17pour visualiser votre position par rapport à la route et naviguer au point pour l'implanter.

Si votre position courante se trouve :

- A moins de 30 m de l'alignement, la vue en plan affiche une ligne pointillée verte tracée à un angle droit à partir de votre position courante à polyligne.
- A plus de 30 mètres de l'alignement logiciel vous dirige à une position sur l'alignement. Celle-ci est calculée en projetant votre position courante à angle droit à l'alignement.
- 6. Lorsque le point se trouve dans la tolérance, appuyez sur **Mesurer** pour mesurer le point.

Lors de l'utilisation d'un Station totale de scan Trimble SX12 en mode **TRK** avec le *pointeur laser activé*, l'écran Implantation affiche la touche programmable Repérer point au lieu de la touche programmable **Mesurer**. Appuyez sur **Repérer point** pour mettre l'instrument en mode **STD**. Le pointeur laser cesse de clignoter et se déplace pour se positionner à la position EDM. Lorsque vous appuyez sur **Accepter** pour stocker le point, l'instrument retourne automatiquement au mode **TRK** et le pointeur laser reprend le clignotement. Pour mesurer à nouveau et mettre à jour les deltas d'implantation, appuyez sur **Mesurer** après avoir appuyé sur **Repérer point** et avant d'appuyer sur **Accepter**.

Appuyez sur **Stocker**.

Le logiciel retourne à l'écran de navigation.

- 7. Continuez de mesurer des points le long de la route.
- 8. Pour quitter cette méthode d'implantation, appuyez sur **Esc**.

NOTE -

- Pour comprendre la façon dont votre position est calculée entre les polylignes, référez-vous à Interpolation des polylignes, page 14
- Si la route ne consiste en qu'un alignement (polyligne 6D), la valeur **Dist V.** indiquera la distance verticale à cette polyligne.

Pour implanter une position par rapport à une polyligne dans une route GENIO:

Pour implanter une position par rapport à une polyligne sur une route GENIO, commencez le levé et puis :

1. Appuyez sur les lignes de fond représentant la polyligne. Le nom de la polyligne sélectionnée s'affiche en haut de l'écran.

Pour sélectionner une autre polyligne, utilisez les touches directionnelles gauche et droite. Alternativement, appuyez et restez dans la vue en plan et sélectionnez une polyligne de la liste. Les polylignes dans la liste sont déterminées par les polylignes à votre position courante.

- 2. Si requis, dans le menu appuyer et rester sélectionnez **Modifier élévation**. Pour recharger une élévation modifiée, sélectionnez **Recharger élévation originale**.
- 3. Si requis, ajoutez les caractéristiques suivantes :
 - Pour implanter des points décalés de la route, laissant la chaussée dégagée pour la construction, définissez un déport de construction.
 - Pour implanter des positions de point d'entrée en terre en déblai/remblai, définissez ou modifiez un talus.
 - Pour confirmer la construction de la surface définissez un talus.
- 4. Appuyez sur **Commencer**.

L'écran Navigation dans la route, page 17 s'affiche. Appuyez sur **Options** pour configurer les préférences pour les détails de l'affichage de navigation, la pente, Implanté point, ou pour afficher les deltas d'implantation relatifs à un Modèle numérique de terrain (MNT).

5. Utilisez les informations dans l'écran Navigation dans la route, page 17pour visualiser votre position par rapport à la route et naviguer au point pour l'implanter.

Si votre position courante se trouve à moins de 5 m de la polyligne sélectionnée, la vue en plan affiche une ligne pointillée verte tracée perpendiculairement de votre position courante vers la polyligne.

Si vous implantez un point d'entrée en terre (polyligne 5D / Interface) ayant des déports de construction, naviguez au point d'entrée en terre et puis tapez **Appliq** pour ajouter les déports de construction. Vous êtes invité d'appliquer les déports à partir de votre position courante. Si vous n'êtes pas sur la position d'entrée en terre, sélectionnez **Non**, naviguez à la position d'entrée en terre et tapez **Appliq** à nouveau. Pour stocker le point d'entrée en terre et le déport de construction, voir Déports de construction

6. Lorsque le point se trouve dans la tolérance, appuyez sur **Mesurer** pour mesurer le point.

Lors de l'utilisation d'un Station totale de scan Trimble SX12 en mode **TRK** avec le *pointeur laser activé*, l'écran Implantation affiche la touche programmable Repérer point au lieu de la touche programmable **Mesurer**. Appuyez sur **Repérer point** pour mettre l'instrument en mode **STD**. Le pointeur laser cesse de clignoter et se déplace pour se positionner à la position EDM. Lorsque vous appuyez sur **Accepter** pour stocker le point, l'instrument retourne automatiquement au mode **TRK** et le pointeur laser reprend le clignotement. Pour mesurer à nouveau et mettre à jour les deltas d'implantation, appuyez sur **Mesurer** après avoir appuyé sur **Repérer point** et avant d'appuyer sur **Accepter**.

Appuyez sur Stocker.

Le logiciel retourne à l'écran de navigation.

- 7. Continuez de mesurer des points le long de la route.
- 8. Pour quitter cette méthode d'implantation, appuyez sur **Esc**.

NOTE -

- Si la polyligne sélectionnée à implanter est une polyligne 5D Routes convertit cette polyligne à un talus. La valeur de pente calculée est définie par la pente entre la polyligne 5D et la polyligne 3D adjacente .
- Pour les polylignes 5D / Interface, il peut être que la cible ne coïncide pas avec la position du projet parce que la cible est calculée en fonction de votre position courante.

Pour implanter une station sur une polyligne dans une route GENIO

Pour implanter une station sur une polyligne dans une route GENIO, commencez le levé et puis :

1. Dans la vue en plan ou en profil en travers, appuyez sur la station sur la polyligne.

Pour sélectionner une position différente, utilisez les touches directionnelles gauche/droite pour sélectionner une polyligne différente et les touches directionnelles en haut/bas pour sélectionner une station différente.

Pour sélectionner la station à partir d'une liste, dans le menu appuyer et rester appuyez sur **Sélect. la polyligne** et sélectionnez la polyligne et puis dans le menu appuyer et rester appuyez sur **Sélectionner la station**.

Pour mesurer une position définie par une station nominale, dans le menu appuyer et rester appuyez sur **Sélectionner station** et puis entrez une valeur de station dans le champ **Station**. Pour de plus amples informations, référez-vous à Interpolation des polylignes, page 14.

2. Si requis, dans le menu appuyer et rester sélectionnez **Modifier élévation**. Pour recharger une élévation modifiée, sélectionnez **Recharger élévation originale**.

- 3. Si requis, ajoutez les caractéristiques suivantes :
 - Pour implanter des points décalés de la route, laissant la chaussée dégagée pour la construction, définissez un déport de construction.
 - Pour implanter des positions de point d'entrée en terre en déblai/remblai, définissez ou modifiez un talus.
 - Pour confirmer la construction de la surface définissez un talus.
 - Pour implanter des points sur des surfaces autre que la surface routière finie, sélectionnez Définir sol de fondation.
- 4. Appuyez sur **Commencer**.

L'écran Navigation dans la route, page 17 s'affiche. Appuyez sur **Options** pour configurer les préférences pour les détails de l'affichage de navigation, la pente, Implanté point, ou pour afficher les deltas d'implantation relatifs à un Modèle numérique de terrain (MNT).

5. Utilisez les informations dans l'écran Navigation dans la route, page 17pour visualiser votre position par rapport à la route et naviguer au point pour l'implanter.

Si vous implantez un point d'entrée en terre (polyligne 5D / Interface) ayant des déports de construction, naviguez au point d'entrée en terre et puis tapez **Appliq** pour ajouter les déports de construction. Vous êtes invité d'appliquer les déports à partir de votre position courante. Si vous n'êtes pas sur la position d'entrée en terre, sélectionnez **Non**, naviguez à la position d'entrée en terre et tapez **Appliq** à nouveau. Pour stocker le point d'entrée en terre et le déport de construction, voir Déports de construction

6. Lorsque le point se trouve dans la tolérance, appuyez sur **Mesurer** pour mesurer le point.

Lors de l'utilisation d'un Station totale de scan Trimble SX12 en mode **TRK** avec le *pointeur laser activé*, l'écran Implantation affiche la touche programmable Repérer point au lieu de la touche programmable **Mesurer**. Appuyez sur **Repérer point** pour mettre l'instrument en mode **STD**. Le pointeur laser cesse de clignoter et se déplace pour se positionner à la position EDM. Lorsque vous appuyez sur **Accepter** pour stocker le point, l'instrument retourne automatiquement au mode **TRK** et le pointeur laser reprend le clignotement. Pour mesurer à nouveau et mettre à jour les deltas d'implantation, appuyez sur **Mesurer** après avoir appuyé sur **Repérer point** et avant d'appuyer sur **Accepter**.

Appuyez sur **Stocker**.

Le logiciel retourne à l'écran de sélection.

7. Continuez de sélectionner et mesurer des points le long de la route, ou sélectionnez une méthode d'implantation différente.

NOTE -

- Pour les polylignes 5D / Interface, il peut être que la cible ne coïncide pas avec la position du projet parce que la cible est calculée en fonction de votre position courante.
- Si la polyligne sélectionnée à implanter est une polyligne 5D Routes convertit cette polyligne à un talus. La valeur de pente calculée est définie par la pente entre la polyligne 5D et la polyligne 3D adjacente .
Pour implanter une position par rapport à une route secondaire

L'option **Sélectionner la route secondaire** vous permet de référencer les détails d'implantation d'une route secondaire à une position en train d'être implantée sur une route (courante) principale. Cette option est particulièrement utile lors de l'implantation de la médiane d'une autoroute à double chaussée/divisée. Elle permet de positionner un piquet unique avec les détails d'implantation pour les bords à gauche et à droite de la médiane.

- 1. Appuyez sur \equiv et sélectionnez **Implanter**.
- 2. Appuyez sur **Routes de Implantation**.
- 3. Sélectionnez le fichier GENIO. Appuyez sur **Suivant**.
- 4. Sélectionnez la route principale. Appuyez sur **Suivant**.
- 5. Entrez une valeur dans le champ Hauteur antenne/cible. Appuyez sur Suivant.

La route principale s'affiche.

- 6. Sélectionnez la position à implanter sur la route primaire. La position doit être sur une polyligne 3D.
- 7. Dans le menu appuyer et rester, appuyez sur Sélectionner la route secondaire.

La route secondaire s'affiche dans la vue en plan.

NOTE – Il se peut que vous deviez répéter l'étape 6 après la sélection de la route secondaire.

TIP – Pour désélectionner une route secondaire, sélectionnez une position sur une polyligne 3D et puis, dans le menu appuyer et rester, sélectionnez **Sélectionner la route secondaire** et puis appuyez sur **Aucune**.

- 8. Pour sélectionner la position à implanter sur la route secondaire:
 - a. Appuyez et rester dans la vue en plan ou en profil en travers et sélectionnez **Afficher le profil** en travers secondaire.

La valeur de station calculée sur la route secondaire **(1)** de la position sélectionnée sur la route principale **(2)**, avec le déport calculé **(3)** à partir de la position sélectionnée jusqu'à la route secondaire s'affiche en haut de l'écran :

b. Le profil en travers de la route secondaire (1) à la station calculée est affiché avec la position sélectionnée à implanter sur la route principale (2). Appuyez sur la ligne (3) précédant la position que vous voulez implanter sur la route secondaire :

Les détails d'implantation pour la route secondaire indiqués dans l'écran **Confirmer deltas implantés** comprennent Dist V. à la route **(4)**, Déport de construction horizontal (calculé) **(5)** et Distance à l'axe en plan **(6)**.

- 9. Appuyez sur **Accepter**.
- 10. Appuyez sur **Commencer**. Utilisez la vue en plan ou en profil en travers pour naviguer au point.
- 11. Lorsque le point se trouve dans la tolérance, mesurez le point et marquez le jalon avec les deltas pour les routes principales et secondaires.

Implanter une position à un déport incliné

NOTE – Cette méthode d'implantation peut être utilisée lors de l'implantation à partir d'un **fichier de projet routier**. Elle ne s'applique pas lors de l'implantation des **Polylignes et surfaces**.

Utilisez cette la méthode d'implantation **Déport incliné** pour implanter une position que n'est pas définie à angle droit de l'axe en plan, par exemple lors de l'implantation des ponceaux ou des piliers de pont.

La figure ci-dessous illustre un point défini par une inclinaison en avant et un déport à droite. Le point à implanter **(1)** est défini à partir de la station **(3)** par un déport **(5)** le long de l'inclinaison **(2)**. Il est possible de définir l'inclinaison par un angle delta en avant ou en arrière vers une ligne **(6)** à angle droit à la route en cours d'implantation **(4)** ou, alternativement, l'inclinaison peut être défini par un azimut.

Pour implanter une position à un déport incliné

- 1. Dans l'écran de sélection d'implantation, sélectionnez **Déport incliné** dans le champ **Implanter**.
- 2. Dans la carte, appuyez sur la station sur l'alignement à partir de laquelle le déport incliné sera

appliqué. Alternativement, appuyez sur *il* à côté du champ **Station** pour sélectionner la station dans la liste.

TIP -

- Pour personnaliser les stations disponibles à l'implantation, appuyez sur à côté du champ **Station** pour afficher l'écran **Sélectionner la station**. Voir Stations disponibles pour l'implantation, page 44.
- Pour implanter un déport incliné par rapport à une valeur de station nominale (où la station ne doit pas coïncider avec un profil en travers), entrez une valeur de station nominale.
- 3. Pour définir le déport incliné :
 - a. Entrez les valeurs de **Déport** et **Incliné**. Appuyez sur **>** pour changer la direction du déport ou de l'inclinaison.
 - b. Pour définir l'élévation du point, sélectionnez :
 - **Pente de la polyligne** pour calculer l'élévation par une pente à partir de l'élévation sur la polyligne à la station sélectionnée.
 - **Delta de la polyligne** pour calculer l'élévation par un delta à partir de l'élévation sur la polyligne à la station sélectionnée.
 - Entrer pour entrer l'élévation.

Si la route n'a qu'un axe en plan, il faut entrer l'élévation.

- c. Appuyez sur **Accepter**.
- 4. Pour implanter des points décalées de la route, ainsi laissant la route dégagée pour la construction, définissez un déport de construction.

Voir

5. Appuyez sur **Commencer**.

L'écran Navigation dans la route, page 17 s'affiche. Appuyez sur **Options** pour configurer les préférences pour les détails de l'affichage de navigation, la pente, Implanté point, ou pour afficher les deltas d'implantation relatifs à un Modèle numérique de terrain (MNT).

- 6. Utilisez les informations dans l'écran Navigation dans la route, page 17pour visualiser votre position par rapport à la route et naviguer au point pour l'implanter.
- 7. Lorsque le point se trouve dans la tolérance, appuyez sur **Mesurer** pour mesurer le point.

Lors de l'utilisation d'un Station totale de scan Trimble SX12 en mode **TRK** avec le *pointeur laser activé*, l'écran Implantation affiche la touche programmable Repérer point au lieu de la touche programmable **Mesurer**. Appuyez sur **Repérer point** pour mettre l'instrument en mode **STD**. Le pointeur laser cesse de clignoter et se déplace pour se positionner à la position EDM. Lorsque vous appuyez sur **Accepter** pour stocker le point, l'instrument retourne automatiquement au mode **TRK** et le pointeur laser reprend le clignotement. Pour mesurer à nouveau et mettre à jour les deltas d'implantation, appuyez sur **Mesurer** après avoir appuyé sur **Repérer point** et avant d'appuyer sur **Accepter**.

8. Appuyez sur **Stocker**.

Le logiciel retourne à l'écran de navigation.

Prochaines étapes

• Pour continuer la mesure des points le long de la route, appuyez sur la touche programmable **Sta+** ou **Sta-** pour sélectionner la station suivante ou précédente.

Si vous avez activé le champ **Incrément auto** dans l'écran **Sélectionner la station** alors la station suivante ou précédente est sélectionnée automatiquement. Voir Stations disponibles pour l'implantation, page 44.

- Appuyez sur **Echap** pour quitter cette méthode d'implantation.
- Changez les méthodes d'implantation. Pour implanter :
 - A la route, appuyez deux fois sur une partie vide de la carte.
 - A une polyligne, appuyez sur la polyligne dans la carte.
 - Une **Station sur une polyligne**, appuyez sur la station sur une polyligne dans la carte.

Options d'implantation de route

En fonction de la méthode d'implantation sélectionnée, vous pouvez ajouter plus caractéristiques à la route ou modifier des caractéristiques existantes lors de l'implantation de la route.

Lors de l'implantation à partir d'un fichier de projet routier ou à partir des surfaces et des polylignes :

- Pour personnaliser les stations disponibles pour l'implantation, voir Stations disponibles pour l'implantation, page 44.
- Pour implanter des points décalés de la route, laissant la chaussée dégagée pour la construction, définissez un déport de construction.
- Pour afficher les deltas d'implantation relatifs à une surface, voir Deltas d'implantation supplémentaires à une surface, page 54.

Lors de l'implantation à partir d'un fichier de projet routier vous pouvez également :

- Naviguez à et implantez le point d'entrée en terre (le point où la pente du projet croise le sol. Voir Le point d'entrée en terre, page 55.
- Ajouter ou modifier un talus. Voir Talus, page 59.

- Définissez un dévers lorsqu'il faut confirmer la construction d'une surface routière. Voir Les talus, page 64.
- Définissez un sol de fondation lorsque le profil en travers représente la surface de la route finale et vous devez implanter les points définissant d'autres surfaces dans la route. Voir Sols de fondation, page 67.

Stations disponibles pour l'implantation

Vous pouvez personnaliser les stations disponibles pour l'implantation lors de l'utilisation des méthodes suivantes :

- Station sur la polyligne (à partir d'un fichier de projet routier ou à partir des polylignes et des surfaces)
- Déport incliné (à partir d'un fichier de projet routier)

Pour personnaliser les stations disponibles, sélectionnez la méthode d'implantation et puis appuyez sur

à côté du champ **Station** dans l'écran **Implantation**. L'écran **Sélect. station** s'affiche, dressant la liste des stations sur l'axe central.

Paramètres d'intervalle de station

Si requis, modifiez l'**Intervalle station pour les lignes** et l'**Intervalle station pour les arcs et les transitions** ou acceptez la valeur par défaut configurée lors de la définition de la route. Une valeur d'intervalle de station séparée pour les arcs et les transitions vous permet de serrer l'intervalle pour les courbes et de représenter avec plus de précision le projet sur le sol.

Sélectionnez la Méthode d'intervalle de station :

- La méthode à **base 0** est la méthode par défaut et fournit des valeurs de station qui sont des multiples de l'intervalle de station. Par exemple, si la station de début est 2.50 et l'intervalle de station est 1.00, la méthode A base 0 produit des stations à 2.50, 3.00, 4.00, 5.00, et ainsi de suite.
- La méthode **Relatif** fournit des valeurs de station par rapport à la station de début. Par exemple, si la station de début est 2,50 et l'intervalle de station est 1,00, la méthode **Relatif** produit des stations à 2,50, 3,50, 4,50, 5,50, et ainsi de suite.

TIP – Si vous avez configuré des valeurs différentes pour l'**Intervalle station pour les lignes** et l'**Intervalle station pour les arcs et les transitions**, alors la liste des stations disponibles peut comprendre des stations à des intervalles différents.

Dans le champ **Incrément auto** :

- Sélectionnez **Sta+** pour automatiser la sélection de la **prochaine** station pour l'implantation.
- Sélectionnez **Sta-** pour automatiser la sélection de la station *précédente* pour l'implantation.
- Sélectionnez **Non** si vous voulez sélectionner manuellement la station suivante à implanter.

La sélection de **Sta+** ou **Sta-** dans le champ **Incrément auto** fournit un flux de travail plus rapide et plus rationalisé.

NOTE – Les paramètres d'Intervalle de station (y compris les paramètres Méthode et Incrément auto) configurés dans l'écran Sélectionner la station sont écrits dans le fichier de routes afin que les mêmes paramètres soient utilisés si le fichier est partagé avec d'autres équipes de levé. Si le fichier est un *fichier IFC*, les paramètres Intervalle de station sont écrits dans un fichier Trimble Additional Properties (TAP). Le fichier TAP est stocké dans le même dossier que le fichier IFC du même nom. Si d'autres équipes de levé utilisent le fichier IFC, alors il faut partager le fichier.tap avec le fichier.ifc afin d'assurer que toutes les équipes de levé utilisent les mêmes paramètres.

Stations disponibles

Pour configurer les types de stations affichés dans la liste de stations, sélectionnez les cases à cocher **Stations disponibles** appropriées.

Selon le type de route, vous pouvez sélectionner les options suivantes :

- Sections calculées définies par l'intervalle de station
- Courbe horizontale (les stations clé définies par l'axe en plan)
- **Courbe verticale** Courbe vert (les stations clé définies par le profil en long projet)
- Profil en travers type (les stations auxquelles des profils en travers type ont été assignés)
- Super/Elarg. (Les stations auxquelles une superélévation et une élargissement ont été assignés)

Les abréviations utilisées dans le logiciel Routes sont :

Type de station	Abréviation	Signification
Début/fin	S	Station de début
	E	Station de fin
Sections calculées	CXS	Sections calculées définies par l'intervalle de station
Courbe verticale	VCS	Début de courbe verticale
	VCE	Fin de courbe verticale
	PIV	Point vertical d'intersection
	Hi	Point haut de courbe verticale
	Lo	Point bas de courbe verticale

Type de station	Abréviation	Signification
Superélévation/Elargissement	SES	Début de superélévation
	SEM	Superélévation maximum
	SEE	Fin de superélévation
	WS	Début d'élargissement
	WM	Elargissement maximum
	WE	Fin d'élargissement
Courbe horizontale	PI	Point d'intersection
	PT	Point de tangente (Courbe à tangente)
	PC	Point de courbure (Tangente à courbe)
	ST	Tangente à spirale
	ST	Spirale à tangente
	SS	Spirale à spirale
	CS	Courbe à spirale
	SC	Spirale à courbe
Allocation de profil en travers type	Т	Allocation de profil en travers type
Autres	DXS	Sections de projet définies par les positions dans le fichier.
	STEQ	Equation de station

Déports de construction de route GENIO

Pour implanter des positions décalées d'une route GENIO, laissant la chaussée dégagée pour la construction, définissez un ou plusieurs déports de construction pour la route. Le déport de construction est appliqué à toutes les positions dans la route.

Dans la vue en plan ou en profil en travers, un déport de construction est indiqué par une ligne verte en pointillés, et un cercle vert solide indique la position sélectionnée ajustée pour les déports de construction.

Lorsque vous définissez un déport de construction pour une route, le déport de construction est :

- utilisé pour toutes les routes du même format de fichier dans la même étude.
- utilisé pour tous les levés suivants de la route dans la même étude, jusqu'à ce qu'un déport de construction différent soit défini/
- n'est pas utilisé pour la même route lorsqu'elle est accédée à partir d'une étude différente.

Pour définir un déport de construction, appuyez et restez sur la vue en plan ou vue de profil en travers et sélectionnez **Définir déports de construction**.

Déports de construction horizontaux

Lors de l'implantation à une polyligne ou lors de l'implantation des stations sur une polyligne, vous pouvez définir un déport de construction horizontal où :

- Une valeur négative permet de décaler le point à gauche de l'axe en plan.
- Une valeur positive permet de décaler le point à droite de l'axe en plan.

Pour toutes les autres polylignes, y compris des polylignes de talus, vous pouvez définir un déport de construction horizontal où :

- Une valeur négative permet de décaler des points vers l'axe en plan (intra).
- Une valeur positive permet de décaler des points depuis l'axe en plan (extra).

NOTE – Lors de l'implantation d'un talus avec déports de construction à l'endroit où vous voulez stocker une position au point d'entrée en terre et à la position de déport, sélectionnez la case à cocher **Stocker pt. d'entrée en terre et déport de construction** lors de la définition du déport de construction. Voir Point d'entrée en terre.

Lors de l'implantation des stations sur une polyligne, appuyez sur 🕨 à côté du champ **Déport horizontal** pour spécifier s'il faut appliquer le déport :

- Horizontalement
- à l'inclinaison de la ligne depuis la polyligne précédente à la polyligne courante dans le profil en travers
- à l'inclinaison de la ligne depuis la polyligne courante à la polyligne suivante dans le profil en travers

Le diagramme suivant illustre un **Déport horizontal (1)**, une **Pente précédente décalée (2)** et une **Pente suivante décalée (3)** appliquées à une position. Pour l'option **Pente précédente**, l'inclinaison du déport est définie par l'inclinaison de la ligne (4) avant la position (5) sélectionnée à implanter. Pour l'option **Pente**

suivante, l'inclinaison du déport est définie par l'inclinaison de la ligne (4) après la position (6) sélectionnée à implanter. La valeur du **Déport vertical** dans le diagramme est 0,000.

NOTE – Pour les points avec un déport de zéro, vous ne pouvez pas appliquer les déports de construction horizontaux à la valeur inclinée de la ligne précédente.

Manuel de l'utilisateur Trimble Access GENIO Routes | 48

Pour une route GENIO, appuyez sur 🔈 à côté du champ **Déport horizontal** pour spécifier s'il faut appliquer le déport:

- Perpendiculaire à l'alignement pour la polyligne implantée
- Perpendiculaire à la polyligne implantée

Le diagramme suivant illustre un **Déport horizontal (1)** appliqué perpendiculaire à la polyligne d'alignement **(2)** et un **Déport horizontal (3)** appliqué perpendiculaire à la polyligne **(4)**.

Lors de l'implantation des stations sur une polyligne, vous pouvez définir un déport horizontal par la distance à partir de la position sélectionnée à l'alignement. Pour ce faire:

- 1. Appuyez sur 🕨 à côté du champ **Déport horizontal** et sélectionnez **A l'alignement**.
- 2. Naviguez à la cible qui sera à l'alignement.
- 3. Mesurez et stockez le point.

Le déport horizontal calculé est rapporté dans les **Deltas implantés**.

Cette option n'est pas disponible si la polyligne implantée est une polyligne 5D ou si le déport horizontal est appliqué perpendiculaire à la polyligne.

Lors de la mesure des positions par rapport à une polyligne ou une station sur une polyligne, vous pouvez définir un déport horizontal par la distance à partir de la position sélectionnée à votre position courante. Pour ce faire:

- 1. Appuyez sur 🕨 à côté du champ **Déport horizontal** et sélectionnez **Calculé**.
- 2. Naviguez à la position où vous voulez implanter le piquet.

Le delta de navigation **Allez à gauche / Allez à droite** est remplacé par le déport de construction horizontal calculé.

3. Mesurez et stockez le point.

Le déport horizontal calculé est rapporté dans les **Deltas implantés**.

Cette option n'est pas disponible si le déport horizontal est appliqué perpendiculaire à la polyligne.

Déports de construction verticaux

Vous pouvez appliquer un déport de construction vertical à un point où :

- Une valeur négative permet de décaler des points vers le bas.
- Une valeur positive permet de décaler des points vers le haut.

La valeur **Déport vertical**spécifiée n'est pas appliquée à une surface.

Appuyez sur 🕨 à côté du champ **Déport vertical** pour spécifier s'il faut appliquer le déport :

- verticalement
- perpendiculaire à l'élément dans le profil en travers avant le point implanté

Le diagramme suivant illustre un **Déport vertical** appliqué verticalement **(1)** et un **Déport vertical** appliqué perpendiculaire **(2)** à l'élément de profil en travers précédent **(3)**.

Déports de construction de station

Vous pouvez appliquer un déport de construction de station où :

- Une valeur positive effectue le déport du point dans la direction de station croissante (En avant).
- Une valeur négative effectue le déport du point dans la direction de station décroissante (En arrière).

Manuel de l'utilisateur Trimble Access GENIO Routes | 51

NOTE -

- Vous ne pouvez pas appliquer un déport de construction de station à une polyligne 5D de route GENIO qui représente une position de point d'entrée en terre.
- Le déport de construction de station est appliqué de façon tangentielle à la polyligne implantée.

Les déports de construction de station sont utiles pour le positionnement des puisards le long d'une section courbée de la route, comme indiqué dans le diagramme suivant. Du fait que le puisard **(1)** est habituellement positionné avant la mise en place de la bordure **(2)** et du canal, en décalant la station en avant **(3)** et en arrière **(4)** et horizontalement à gauche **(5)** et à droite **(6)**, le puisard peut être positionné avec l'orientation correcte.

Deltas d'implantation supplémentaires à une surface

L'implantation fournit typiquement la navigation horizontale et le déblai/remblai par rapport à la route ou la polyligne que vous implantez.

En outre, vous pouvez afficher le déblai/remblai à une surface sélectionnée. La surface peut être une surface topographique, ou elle peut être n'importe quelle surface dans un fichier BIM.

- 1. Transférez un fichier de surface au dossier du projet approprié sur le contrôleur.
- 2. Vérifiez que le fichier contenant la surface soit visible et sélectionnable dans la carte.

Lors de l'implantation d'une surface topographique, votre position courante, l'élévation de votre position courante, l'élévation de la surface, et la distance au-dessus (déblai) ou en-dessous (remblai) de la surface s'affichent dans l'écran de carte.

- 3. Dans la carte, appuyez sur la route ou la polyligne et puis appuyez sur **Implanter**.
- 4. Activez le bouton Déblai/Remblai à la surface.
 - a. Dans le champ Surface, sélectionnez le fichier de surface à partir du dossier du projet courant.
 Alternativement, dans la carte sélectionnez des surfaces à partir des fichiers BIM. Le champ
 Surface indique le nombre de surfaces que vous avez sélectionné dans la carte.

Si vous ne pouvez pas sélectionner des surfaces dans la carte, vérifiez que le fichier BIM soit configuré sur sélectionnable dans le **Gestionnaire** des couches. Si le bouton **Mode de**

sélection \clubsuit_{\circ} dans la barre d'outils **BIM** est en jaune $\fbox{}_{\circ}$, appuyez sur celui-ci et sélectionnez le mode **Sélection de surface - Faces individuelles**.

NOTE – Vous pouvez sélectionner le mode **Sélection de surface - Objet entier**, mais lors de l'utilisation du mode **Objet entier**, le logiciel sélectionne à la fois la surface supérieure et inférieure et calcule le déblai/remblai à la surface à laquelle vous vous trouvez le plus proche.

- b. Si requis, dans le champ Déport à la surface, spécifiez un déport à la surface. Appuyez sur pour sélectionner s'il faut appliquer le déport verticalement ou perpendiculairement à la surface.
- c. Pour afficher la distance à la surface dans l'écran de navigation d'implantation, appuyez sur
 Options. Dans la boîte de groupe Deltas, appuyez sur Modifier et sélectionnez le delta Dist V à
 la surface à la position actuelle ou Dist. perp. à la surface à la position actuelle. Appuyez sur Accepter.
- 5. Implantez la route comme d'habitude.

NOTE – Lors de l'implantation **A la polyligne principale**, **A la route**, ou **A la polyligne**, le déblai/remblai est à la surface à votre position courante. Lors de l'implantation **A une station sur une polyligne**, le déblai/remblai affiché est le déblai/remblai à la surface à la station sélectionnée (y compris lors de l'utilisation des déports de construction).

Lors de l'affichage du profil en travers, la surface s'affiche à votre position courante comme une ligne verte. Un cercle sur la surface indique votre position projetée verticalement à la surface. Si le mode de

sélection du modèle BIM est **Sélection de surface - Objet entier**, le profil en travers affiche à la fois la surface supérieure et inférieure. Un cercle sur la surface indique votre position projetée verticalement à la surface.

TIP -

- Pour vérifier l'épaisseur de couche lors de la construction d'une route, définissez une surface pour la couche précédente et puis, lors de l'implantation de la couche actuelle, appuyez sur Options et dans la boîte de groupe Deltas, appuyez sur Modifier et sélectionnez les deltas Dist.V. à la surface.
- Pour changer la surface sélectionnée, appuyez sur **Esc** pour retourner à l'écran de sélection d'implantation et sélectionnez un fichier de surface différent. Pour sélectionner une surface différente de la carte, appuyez deux fois dans la carte pour effacer la sélection courante et puis sélectionnez la nouvelle surface.

Le point d'entrée en terre

NOTE – Le point d'entrée en terre ne s'applique que lors de l'implantation à partir d'un **fichier de projet routier**. Un point d'entrée en terre ne s'applique pas lors de l'implantation des **Polylignes et surfaces**.

Le point d'entrée en terre est le point auquel le talus du projet intersecte avec la terre.

La position d'intersection actuelle du talus avec la surface de sol existante – le point d'entrée en terre – est déterminée de façon itérative (par répétition). Le logiciel calcule l'intersection d'un plan horizontal passant à travers la position courante, et soit le talus en déblai soit le talus en remblai, comme indiqué dans le diagramme suivant, où x _n est la valeur **Allez à droite/gauche**.

Implantation d'une route GENIO

La vue en plan, affiche la position de point d'entrée en terre calculée. La valeur inclinée calculée (en bleu) et la valeur inclinée du projet s'affichent en haut de l'écran.

Le profil en travers s'affiche en regardant dans la direction de la station croissante. Votre position courante et la cible calculée sont indiquées. Une ligne est tracée (en bleu) de la position d'épaulement jusqu'à votre position courante pour indiquer la pente calculée.

Des lignes vertes indiquent si le point d'entrée en terre a des dés déports de construction spécifiés. Le cercle simple plus petit indique la position d'entrée en terre sélectionnée et le double cercle indique la position

sélectionnée ajustée pour les déports de construction spécifiés. Les déports de contraction ne s'affichent qu'après vous les avez appliqués.

NOTE – Pour les déports de talus dont la pente change entre les profils en travers type, le logiciel va calculer le talus pour les stations intermédiaires par l'interpolation de la valeur de pente.

Deltas implantés de point d'entrée en terre

Pour afficher l'écran **Rapport de delta de point d'entrée en terre**, appuyez sur **Rapport** dans l'écran **Confirmer écarts implantés** ou l'écran **Revoir étude**.

Les distances horizontales et verticales depuis le point d'entrée en terre à chaque polyligne s'affichent, jusqu'à et y compris l'axe en plan. Si le profil en travers type comprend une fossé en déblai, le rapport comprendra la position d'épaulement à la butée de la pente en déblai. Les valeurs rapportées excluent tout déport de construction spécifié. Référez-vous au diagramme ci-dessous :

А	=	La distance à l'axe en plan
В	=	La distance horizontale au point d'épaulement
С	=	La distance verticale au point d'épaulement

Manuel de l'utilisateur Trimble Access GENIO Routes | 58

D	=	Inclinée
E	=	La distance inclinée au point d'épaulement
F	=	Le déport de construction horizontal
G	=	Le déport de fossé
Н	=	Le point d'épaulement
J	=	Le point d'entrée en terre

NOTE -

- Lorsque vous implantez un talus en remblai avec un sol de fondation, les deltas comme implantés comprennent la distance du point d'entrée en terre à l'intersection du sol de fondation avec le talus.
- La valeur dans le champ Dist incl à épaul. + Constr. déport comprend toute valeur de déport de construction spécifiée et détaille la distance inclinée depuis l'épaulement à la position implantée. La valeur est nulle (?) lorsqu'il n'y a aucun déport de construction horizontal appliqué ou lorsque le déport de construction horizontal est appliqué horizontalement.

Talus

Sous certaines circonstances, il se peut que vous deviez ajouter ou modifier le talus. Le talus, et toute modification au talus, est écarté après la mesure d'une position ou lorsque vous quittez l'écran d'implantation.

NOTE – Les talus peuvent être utilisés lors de l'implantation à partir d'un **fichier de projet routier**. Les talus ne peuvent pas être utilisés lors de l'implantation des **polylignes et surfaces**.

Ajout d'un talus

Vous pouvez ajouter un talus lors de l'implantation d'une station sur une polyligne ou la mesure de votre position par rapport à une polyligne. La polyligne est, par défaut, la polyligne d'épaulement mais vous pouvez sélectionner une polyligne différente comme la polyligne d'épaulement si requis. Vous ne pouvez pas ajouter un talus à l'alignement.

- 1. Dans l'écran d'implantation, appuyez et restez sur la carte en plan ou en profil en travers et sélectionnez **Ajouter un talus**.
- 2. Complétez les détails définissant le talus.

NOTE – L'ajout d'un talus lors de l'implantation est disponible uniquement pour une route RXL. Cependant, lors de la définition d'une route GENIO, vous pouvez ajouter une nouvelle polyligne et puis éditer son type afin qu'elle soit une **Polyligne 5D d'interface**, ce qui ajoute effectivement un talus.

Modification d'un talus

Si la valeur de pente en déblai ou en remblai du projet ou la valeur de largeur de fossé en déblai n'est pas applicable, remplacez la valeur avec une nouvelle valeur.

- 1. Dans l'écran d'implantation, appuyez et restez sur la vue en plan ou en profil en travers et sélectionnez **Modifier le talus**.
- 2. Complétez les détails définissant le talus.

Sous certaines circonstances, il peut être préférable d'ajuster la valeur de pente en déblai ou en remblai à la valuer définie par la pente de la polyligne courante à la polyligne suivante ou de la polyligne précédente à la polyligne courante. Dans le champ **Pente déblai** ou le champ **Pente remblai**, sélectionnez **Pente à la polyligne suivante** ou **Pente de la polyligne précédente**. Le champ **Pente** se met à jour avec la valeur de pente appropriée.

L'exemple ci-dessous indique où vous pourriez sélectionner l'option **Pente à la polyligne suivante** ou la **Pente de la polyligne précédente** pour une pente en déblai. Une procédure semblable peut être utilisée pour une pente en remblai.

NOTE – Les options de pente à la polyligne suivante ou précédente sont disponibles :

- Uniquement si une polyligne suivante ou précédente existe.
- Dans le champ **Pente déblai**, les options ne sont disponibles que lorsque les valeurs de pente suivante ou précédente sont positives, c'est à dire, si elles définissent une pente en déblai.
- Dans le champ **Pente remblai**, les options ne sont disponibles que lorsque les valeurs de pente suivante ou précédente sont négatives, c'est à dire, elles définissent une pente en remblai.

Quelques fois, en particulier pour les fichiers de route LandXML, le talus peut spécifier seulement une valeur de pente, et l'autre est nulle (?)Si, lors de l'implantation d'un talus, les valeurs de talus calculées et du projet en haut de l'écran de navigation sont nulles, cela indique que la valeur de pente non définie est requise pour implanter le point d'entrée en terre. Utilisez l'option **Éditer le talus** pour spécifier la valeur de pente afin de permettre l'implantation du point d'entrée en terre.

Vous pouvez également :

- changer le nom de la polyligne
- sélectionner une polyligne différente comme la polyligne d'épaulement, si requis.

Un talus s'affiche en rouge si modifié.

Le diagramme suivant présente un exemple typique dans lequel il se peut que ces options soient utiles.

Sélection d'une polyligne différente come la polyligne d'épaulement

- 1. Dans l'écran d'implantation, appuyez et restez sur la vue en plan ou en profil en travers et sélectionnez **Modifier le talus**.
- 2. Dans le champ **Polyligne d'épaulement** appuyez sur la flèche et puis sélectionnez une nouvelle polyligne au moyen de l'une de ces méthodes.

- Appuyez sur une polyligne dans l'écran
- Si approprié pour votre contrôleur, utilisez les touches directionnelles gauche/droite
- Appuyez et restez sur l'écran et sélectionnez la polyligne dans la liste

La polyligne d'épaulement courante s'affiche comme un cercle bleu solide.

Exemple - sélectionnez la polyligne d'épaulement et modifier le talus

Le diagramme ci-dessous présente un exemple typique dans lequel il se peut que vous sélectionniez une polyligne différente comme la polyligne d'épaulement. Dans cet exemple, le dessin original avec l'épaulement à la polyligne **C** est en remblai, produisant ainsi une zone de remblai indésirable **(1)**. En sélectionnant la polyligne **B** comme la polyligne d'épaulement, le nouveau dessin se trouve maintenant en déblai et la zone de remblai indésirable n'existe plus.

Avec la polyligne **B** sélectionné comme la polyligne d'épaulement, la pente en déblai peut être définie en conservant la valeur de pente du projet ou en entrant une autre valeur au clavier. Alternativement, la pente en déblai peut être définie en sélectionnant l'une des options suivantes :

• L'option **Pente de la polyligne précédente** pour définir la pente en déblai comme la pente à partir de la polyligne précédente **A** à la nouvelle polyligne d'épaulement **B**, produisant une position de point d'entrée en terre à **(2)**.

Manuel de l'utilisateur Trimble Access GENIO Routes | 62

 L'option Pente à la polyligne suivante pour définir la pente en déblai comme la pente à partir de la nouvelle polyligne d'épaulement B à la polyligne suivante C, produisant une position de point d'entrée en terre à (3).

Les talus

Définisses un talus lorsqu'il faut confirmer la construction d'une surface de route – typiquement une chaussée.

NOTE -

- Les dévers peuvent être utilisés lors de l'implantation à partir d'un **fichier de projet routier**. Les dévers ne peuvent pas être utilisés lors de l'implantation des**polylignes et surfaces**.
- Un talus doit être défini dans la vue en profil en travers.
- Un talus ne peut pas être défini lors de la mesure de votre position relative à la route ou lors de l'implantation d'un talus.

Lors de l'utilisation d'un dévers, typiquement un fil **(1)** est tendu d'un côté de la route à l'autre attaché à la position **(2)** sur chaque jalon. A la suite, le fil est contrôlé afin de s'assurer qu'il se trouve bien sur la surface de la route formée **(4)**. Ensuite, on répète la procédure pour l'autre côté de la route en attachant le fil aux jalons à la position **(3)**. Le dévers peut être décalé verticalement afin que le fil se trouve dessus la surface et ainsi il est plus facile de confirmer la construction. Si le dévers est décalé, il faut que la distance mesurée à partir du fil à la surface soit constante. L'option de dévers signale les deltas, ainsi permettant de marquer le jalon avec les positions **(2)** et **(3)**.

Pour définir un talus

1. Dans la vue en profil en travers, définissez un déport de construction horizontal, typiquement à **Pente précédente** et entrez un déport vertical, si requis.

Le cercle simple plus petit **(8)** indique la position sélectionne et le double cercle **(6)** indique la position sélectionnée ajustée pour les déports de construction spécifiés. Le(s) déport(s) de construction s'affichent comme une ligne verte **(7)**.

2. Dans la vue en plan ou de profil en travers, appuyez sur **Talus** et suivez les invites à l'écran pour définir le talus.

La ligne sélectionnée (1) s'affiche comme une ligne verte en gras. Une ligne verte à traits (2) s'étend de la ligne sélectionnée et se croise avec une ligne verticale (4) au point d'implantation cible (3).

NOTE – Vous ne pouvez pas définir un talus en sélectionnant une ligne définissant un talus.

- 3. Appuyez sur Accepter.
- 4. Appuyez sur Commencer.
- 5. Naviguez à la cible et puis implantez la position.

6. Utilisez la valeur **Dist. V. talus (5)** pour marquer l'implantation avec la deuxième position.

Pour arrêter d'utiliser le dévers

Pour désactiver la fonction de talus, appuyez sur **Talus** et appuyez sur **Effacer** et puis appuyez sur **Fermer**.

Sols de fondation

Définissez un sol de fondation quand le profil en travers représente la surface de la route finale et vous devez implanter les points définissant d'autres surfaces dans la route – typiquement le sol de fondation.

NOTE -

- Les sols de fondation peuvent être utilisés lors de l'implantation à partir d'un **fichier de projet routier**. Les sols de fondation ne peuvent pas être utilisés lors de l'implantation des **polylignes et surfaces**.
- Vous ne pouvez pas définir un sol de fondation à partir de l'écran **Méthode d'implantation** ou lors de la mesure de votre position par rapport à une route ou une polyligne.

Les points de sol de fondation sont calculés en créant une ligne provisoire qui est parallèle à, et décalée de, une ligne entre 2 polylignes dans le profil en travers. A la suite, les points peuvent être sélectionnés pour l'implantation:

Pour définir un sol de fondation

1. Dans la vue en plan ou de profil en travers, appuyez sur **Sol de fondation** et suivez les invites à l'écran pour définir le sol de fondation.

La ligne sélectionnée **(1)** s'affiche comme une ligne verte en gras. La profondeur jusqu'au sol de fondation **(2)** est à partir de la ligne sélectionnée jusqu'à la surface du sol de fondation. Une ligne **(3)** à traits verte s'étend afin de se croiser avec toutes les lignes rencontrées dans le profil en travers. Si aucune intersection n'est trouvée, les points calculés sont créés aux mêmes déports de début et de fin que ceux de la ligne sélectionnée. Les cercles simples **(4)** indiquent les positions calculées.

NOTE – Vous ne pouvez pas définir un sol de fondation en sélectionnant une ligne définissant un talus.

- 2. Appuyez sur **Accepter**.
- 3. Tapez la position que vous voulez implanter.
- 4. Naviguez à la cible et puis implantez la position.

Pour arrêter l'utilisation du sol de fondation

Pour désactiver la fonction de sol de fondation, appuyez sur **Sol de fondation** et appuyez sur **Effacer** et puis appuyez sur **Fermer**.

Elévations précises

Si vous utilisez un récepteur GNSS pour l'implantation, alors il n'est pas nécessaire de maintenir la ligne de visée vers une station totale. Parfois, cependant, vous devez utiliser une station totale pour un meilleur contrôle de l'élévation. Dans Trimble Access Routes vous pouvez activer l'option **Elévation précise** pour bénéficier du meilleur des deux mondes : configurez un levé intégré et utilisez GNSS pour le positionnement horizontal et utilisez la station totale pour le positionnement vertical.

Du fait que vous n'avez pas besoin de la station totale pour un positionnement horizontal, vous pouvez l'installer sur un point haut avec une bonne visibilité (aucune coordonnée horizontale n'est nécessaire) et utiliser la fonction **Élévation station** pour relier à un ou des point(s) connu(s) pour définir le contrôle d'élévation.

Lors de l'utilisation d'**Élévation précise**, le logiciel fournit la navigation horizontale basée sur GNSS, et la navigation verticale à partir de la station totale. Lorsque vous stockez le point implanté, trois enregistrements de point sont stockés : une position de GNSS, une position de station totale et une position combinée.

TIP – Pour une vue d'ensemble de la configuration d'une élévation précise et de son utilisation pour implanter une route, regardez la vidéo Integrated surveying with precise elevation (Relevé intégré avec élévation précise) sur la chaîne YouTube Trimble Access.

Pour configurer le logiciel afin d'utiliser une élévation précise

- 1. Dans le type de levé intégré que vous utiliserez, sélectionnez la case à cocher **Elévation précise**.
- 2. Pour utiliser des élévations précises, il faut changer à l'application Routes . Pour changer entre les applications, appuyez sur ≡ et appuyez sur le nom de l'application que vous utilisez actuellement, et puis sélectionnez l'application à laquelle il faut changer.

Pour installer l'instrument conventionnel

TIP – Pour installer l'instrument conventionnel, positionnez l'instrument dans un emplacement ayant une bonne visibilité et à l'abri de tout équipement. L'élévation est déterminée par une ou plusieurs mesures d'**Élévation station** au(x) point(s) ayant une élévation connue. Vous pouvez installer la station totale robotique sur un point de contrôle connu, mais ce n'est pas requis.

- 2. Le levé RTK commence. Dès que le levé RTK s'est initialisé, vous pouvez commencer l'installation de station pour le levé conventionnel.
- 3. Configurez les corrections à l'instrument.

Si le formulaire **Corrections** ne s'affiche pas, configurez les corrections en sélectionnant **Options** dans l'écran **Installation station** . Pour afficher le formulaire **Corrections** au démarrage, sélectionnez l'option **Afficher corrections au démarrage** .

- 4. Appuyez sur **Accepter**.
- 5. Si requis, entrez le **Nom du point d'instrument**, le **Code**, et la **Hauteur d'instrument**. Si l'instrument n'est pas installé sur un point connu avec une élévation connue, acceptez le nom de point par défaut et la hauteur d'instrument de 0,000.
- 6. Appuyez sur **Accepter**.
- 7. Entrez le nom du point, le code et les détails de cible du point avec l'élévation connue.

TIP – Pour sélectionner un point déjà dans l'étude, tel qu'un point de contrôle, appuyez sur côté du champ **Nom de point**. Alternativement, vous pouvez entrer un point. Le point ne nécessite qu'un nom et une élévation – les coordonnées horizontales ne sont pas requises.

CAUTION – Si vous utilisez la Compensation d'inclinaison IMU pour la partie RTK du relevé intégré, la compensation d'inclinaison n'est pas appliquée aux observations conventionnelles. Veillez à niveler la canne lorsque l'option **Elévation précise** est activée lors d'un levé d'une route au moyen du logiciel Routes, et lors de l'utilisation des mesures de station totale conventionnelles.

- Positionnez le prisme sur le point avec l'élévation connue et appuyez sur Mesurer. La valeur d'élévation est transférée au point d'instrument. Dès que la mesure est stockée, les Résiduels de points s'affichent.
- 9. Dans l'écran **Résiduels de point**, appuyez sur l'une des touches mortes suivantes:
 - + Point (pour observer des points connus supplémentaires)
 - Détails (pour afficher ou éditer les détails du point)
 - Utiliser (pour activer ou désactiver un point)
- 10. Pour afficher le résultat d'élévation de station, tapez **Résultats** dans l'écran **Résiduels de point**. Pour accepter le résultat, tapez **Stocker**.

Pour commencer l'implantation

1. Dans la carte, appuyez sur la route et appuyez sur **Implanter**.

Le logiciel affiche un message indiquant que l'Élévation précise d'implantation de route est activée.

Si vous utilisez un récepteur GNSS avec compensation d'inclinaison IMU, le message vous avertit que vous devez niveler la canne pour les observations implantées, parce que la compensation d'inclinaison n'est pas appliquée aux observations conventionnelles.

- 2. Appuyez sur **OK** pour écarter le message.
- 3. La route est prête à implanter, utilisant votre méthode d'implantation préférée.

Lors de l'implantation, le logiciel fournit la navigation horizontale basée sur GNSS, et la navigation verticale à partir de la station totale.

Lorsque vous stockez le point implanté, trois enregistrements de point sont stockés : une position de GNSS, une position de station totale et une position combinée.

NOTE – Si la station totale robotique ne peut pas mesurer à la cible, les valeurs de déblai/remblai et de distance verticale s'affichent sous forme de "?".
Rapports

Utilisez la fonction **Rapports** dans le logiciel pour créer des rapports pour les données des levés. Utilisez ces rapports pour vérifier les données sur le terrain, ou pour transférer des données du terrain à votre client ou au bureau pour un traitement ultérieur avec le logiciel de bureau.

Rapports d'implantation Routes

TIP – Pour afficher l'écran **Confirmer deltas implantés** avant de stocker un point, sélectionnez la case à cocher **Afficher avant stockage** dans l'écran **Options d'implantation** et puis sélectionnez le format requis dans le champ **Format des deltas d'implantation**.

Si vous avez choisi d'installer un fichier de **Langues et de fichiers d'aide** lors de l'installation du logiciel, les Trimble Access formats de rapport d'implantation sont installés sur le contrôleur dans la langue de votre choix. Si vous n'avez pas choisi d'installer un fichier de langues, vous pouvez l'installer à tout moment en exécutant Trimble Installation Manager.

Les formats de rapport d'implantation suivants sont installés avec Trimble Access Routes :

• Route – Pt d'entrée en terre + déports

Fournit des détails de tous les deltas routiers standard implantés plus une liste des distances horizontales et verticales des positions de profil en travers de la position de déport implantée. Les distances horizontales et verticales rapportées comprennent les déports de construction horizontaux et verticaux appliqués.

• Indications Route – Implantation

Fournit un affichage d'implantation simplifié qui présente la distance vertical (déblai/remblai) à la position de projet. Les valeurs de station et de déport appropriées ainsi que les détails de profil en travers (pour l'implantation du point d'entrée en terre sont rapportées, basées sur la méthode d'implantation de route.

• Détails Route - Prof. en travers

Fournit tous les détails des deltas implanté routiers standard ainsi qu'une liste des éléments de profil en travers (gauche et droit) qui définissent le profil en travers du projet à la station sélectionnée.

Les feuilles de style pour des rapports de route supplémentaires peuvent être téléchargées à partir de la page Logiciels et utilitaires du Portail d'aide Trimble Access.

Rapports

Pour générer un rapport

- 1. Ouvrez l'étude contenant les données à exporter.
- 2. Appuyez sur \equiv et sélectionnez **Rapport**.
- 3. Dans le champ **Format de fichier**, spécifiez le type de fichier à créer.
- 4. Appuyez sur 🖿 pour ouvrir l'écran **Sélectionner le dossier**.
 - a. Pour créer un nouveau dossier, sélectionnez le dossier dans lequel vous voulez stocker le nouveau dossier et puis appuyez sur 🗉 .
 - b. Sélectionnez le dossier dans lequel vous voulez stocker les données exportées et appuyez sur **Accepter**.
- 5. Entrez un nom de fichier.

Par défaut, le champ **Nom du fichier** affiche le nom de l'étude courante. L'extension du nom de fichier est définie dans la feuille de style XSLT. Modifiez le nom du fichier et l'extension comme requis.

6. Si d'autres champs s'affichent, remplissez-les.

Vous pouvez utiliser les feuilles de style XSLT afin de générer des fichiers et des rapports basés sur les paramètres que vous définissez. Par exemple, lors de la génération d'un Rapport d'implantation, les champs **Tolérance horizontale d'implantation** et **Tolérance verticale d'implantation** définissent les tolérance d'implantation acceptables. Lors de la génération du rapport vous pouvez stipuler les tolérances, ainsi tout delta d'implantation supérieur des tolérances définies s'affiche en couleur dans le rapport généré.

- 7. Pour afficher le fichier automatiquement après sa création, sélectionnez la case à cocher **Afficher fichier créé**.
- 8. Pour créer le fichier, tapez **Accepter**.

Alternativement, exportez l'étude sous forme d'un fichier JobXML et puis utilisez **l'utilitaireFile and Report Generator** pour créer le rapport à partir du fichier JobXML exporté, en utilisant la feuille de style XSLT requise comme le format de sortie.

L'utilitaire File and Report Generator peut être téléchargé à partir de la page Logiciels et utilitaires du Portail d'aide Trimble Access.

Notices juridiques

Trimble Inc.

www.trimble.com/en/legal

Copyright and trademarks

© 2024, Trimble Inc. Tous droits réservés.

Trimble, the Globe and Triangle logo, Autolock, CenterPoint, FOCUS, Geodimeter, GPS Pathfinder, GPS Total Station, OmniSTAR, ProPoint, RealWorks, Spectra, Terramodel, Tracklight, Trimble RTX, and xFill are trademarks of Trimble Inc. registered in the United States and in other countries.

Access, Catalyst, FastStatic, FineLock, GX, IonoGuard, ProPoint, RoadLink, TerraFlex, TIP, Trimble Inertial Platform, Trimble Geomatics Office, Trimble Link, Trimble Survey Controller, Trimble Total Control, TRIMMARK, VISION, VRS, VRS Now, VX, and Zephyr are trademarks of Trimble Inc.

Microsoft, Excel, Internet Explorer, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Google and Android are trademarks of Google LLC.

The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Trimble Inc. is under license.

Wi-Fi and Wi-Fi HaLow are either registered trademarks or trademarks of the Wi-Fi Alliance.

All other trademarks are the property of their respective owners.

This software is based in part on the work of the Independent JPEG Group, derived from the RSA Data Security, Inc, MD5 Message-Digest Algorithm.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (www.openssl.org/).

Trimble Access includes a number of open source libraries.

For more information, see Open source libraries used by Trimble Access.

The Trimble Coordinate System Database provided with the Trimble Access software uses data from a number of third parties. For more information, see Trimble Coordinate System Database Open Source Attribution.

The Trimble Maps service provided with the Trimble Access software uses data from a number of third parties. For more information, see Trimble Maps Copyrights.

For Trimble General Product Terms, go to www.trimble.com/en/legal.